An existing open and modular designed micro X-Ray Computed Tomography (μXRCT) system is extended by a test rig in order to combine mechanical and hydro-mechanical experiments with μXRCT characterization. The aim of the system is to cover the complete resolution range of the underlying μXRCT system in combination with a broad load capacity range. A characteristic feature of the developed setup is that it consists mainly of standard components. This makes the shown test rig potentially interesting for other researchers considering extending an existing μXRCT system with an apparatus for mechanical and hydro-mechanical in situ testing. For the load frame, an uniaxial 10 kN universal testing machine with a digital control system was employed, which was extended by two aligned rotational stages. The uniaxial load capacity is ±3.1 kN and can be combined with torque moments of up to ±15 N m both limited by the used rotational stages. The setup is designed in such a way that different x-ray transparent cells (flow cells, oedometer cells, triaxial cells, etc.) can be integrated to generate three-dimensional stress/strain states as required for porous media research. Three applications demonstrate the possible versatile use of the system. As part of these examples, we show how corresponding x-ray transparent cells are designed and implemented. Finally, we discuss the presented approach’s technical advantages and disadvantages and suggest improvements.

1.
P. J.
Withers
,
C.
Bouman
,
S.
Carmignato
,
V.
Cnudde
,
D.
Grimaldi
,
C. K.
Hagen
,
E.
Maire
,
M.
Manley
,
A.
Du Plessis
, and
S. R.
Stock
, “
X-ray computed tomography
,”
Nat. Rev. Methods Primers
1
,
18
(
2021
).
2.
Y.
Gao
,
W.
Hu
,
S.
Xin
, and
L.
Sun
, “
A review of applications of CT imaging on fiber reinforced composites
,”
J. Compos. Mater.
56
,
133
164
(
2021
).
3.
L.
Vásárhelyi
,
Z.
Kónya
,
Á.
Kukovecz
, and
R.
Vajtai
, “
Microcomputed tomography–based characterization of advanced materials: A review
,”
Mater. Today Adv.
8
,
100084
(
2020
).
4.
E.
Maire
and
P.
Withers
, “
Quantitative X-ray tomography
,”
Int. Mater. Rev.
59
,
1
43
(
2013
).
5.
E. N.
Landis
and
D. T.
Keane
, “
X-ray microtomography
,”
Mater. Charact.
61
,
1305
1316
(
2010
).
6.
S. R.
Stock
, “
Recent advances in X-ray microtomography applied to materials
,”
Int. Mater. Rev.
53
,
129
181
(
2008
).
7.
G.
Viggiani
,
E.
Andò
,
D.
Takano
, and
J. C.
Santamarina
, “
Laboratory x-ray tomography: A valuable experimental tool for revealing processes in soils
,”
Geotech. Test. J.
38
,
20140060
(
2014
).
8.
V.
Cnudde
and
M.
Boone
, “
High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications
,”
Earth-Sci. Rev.
123
,
1
17
(
2013
).
9.
D.
Wildenschild
and
A. P.
Sheppard
, “
X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems
,”
Adv. Water Resour.
51
,
217
246
(
2013
).
10.
R.
Mizutani
and
Y.
Suzuki
, “
X-ray microtomography in biology
,”
Micron
43
,
104
115
(
2012
).
11.
L.
Schoeman
,
P.
Williams
,
A.
du Plessis
, and
M.
Manley
, “
X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure
,”
Trends Food Sci. Technol.
47
,
10
24
(
2016
).
12.
N.
Kotwaliwale
,
K.
Singh
,
A.
Kalne
,
S. N.
Jha
,
N.
Seth
, and
A.
Kar
, “
X-ray imaging methods for internal quality evaluation of agricultural produce
,”
J. Food Sci. Technol.
51
,
1
15
(
2011
).
13.
L.
Gibson
and
M.
Ashby
,
Cellular Solids
(
Cambridge University Press
,
1999
).
14.
In-Situ X-Ray Tomographic Study of Materials
, edited by
E.
Maire
,
J.
Adrien
, and
P. J.
Withers
(
MDPI
,
2020
).
15.
L.
Salvo
,
M.
Suéry
,
A.
Marmottant
,
N.
Limodin
, and
D.
Bernard
, “
3D imaging in material science: Application of X-ray tomography
,”
C. R. Phys.
11
,
641
649
(
2010
).
16.
J.-Y.
Buffiere
,
E.
Maire
,
J.
Adrien
,
J.-P.
Masse
, and
E.
Boller
, “
In situ experiments with X ray tomography: An attractive tool for experimental mechanics
,”
Exp. Mech.
50
,
289
305
(
2010
).
17.
S. S.
Singh
,
J. J.
Williams
,
P.
Hruby
,
X.
Xiao
,
F.
De Carlo
, and
N.
Chawla
, “
In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography
,”
Integr. Mater. Manuf. Innovation
3
,
109
122
(
2014
).
18.
E.
Maire
,
C.
Le Bourlot
,
J.
Adrien
,
A.
Mortensen
, and
R.
Mokso
, “
20 Hz X-ray tomography during an in situ tensile test
,”
Int. J. Fract.
200
,
3
12
(
2016
).
19.
A.
Haboub
,
H. A.
Bale
,
J. R.
Nasiatka
,
B. N.
Cox
,
D. B.
Marshall
,
R. O.
Ritchie
, and
A. A.
MacDowell
, “
Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography
,”
Rev. Sci. Instrum.
85
,
083702
(
2014
).
20.
Industrial X-Ray Computed Tomography
, edited by
S.
Carmignato
,
W.
Dewulf
, and
R.
Leach
(
Springer International Publishing
,
2018
).
21.
S. R.
Stock
,
MicroComputed Tomography: Methodology and Applications
,
2nd ed.
(
CRC Press
,
Boca Raton, FL
,
2019
).
22.
R.
Woracek
,
D.
Penumadu
,
N.
Kardjilov
,
A.
Hilger
,
M.
Strobl
,
R. C.
Wimpory
,
I.
Manke
, and
J.
Banhart
, “
Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading
,”
J. Appl. Phys.
109
,
093506
(
2011
).
23.
R.
Woracek
, “
Energy selective neutron imaging for the characterization of polycrystalline materialspolycrystalline material
,” Ph.D. thesis,
University of Tennessee
,
2015
.
24.
M.
Hoelzel
,
W.
Gan
,
M.
Hofmann
,
C.
Randau
,
G.
Seidl
,
P.
Jüttner
, and
W.
Schmahl
, “
Rotatable multifunctional load frames for neutron diffractometers at FRM II—Design, specifications and applications
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
711
,
101
105
(
2013
).
25.
P. A.
Shade
,
B.
Blank
,
J. C.
Schuren
,
T. J.
Turner
,
P.
Kenesei
,
K.
Goetze
,
R. M.
Suter
,
J. V.
Bernier
,
S. F.
Li
,
J.
Lind
,
U.
Lienert
, and
J.
Almer
, “
A rotational and axial motion system load frame insert for in situ high energy x-ray studies
,”
Rev. Sci. Instrum.
86
,
093902
(
2015
).
26.
M.
Ruf
and
H.
Steeb
, “
An open, modular, and flexible micro X-ray computed tomography system for research
,”
Rev. Sci. Instrum.
91
,
113102
(
2020
).
27.
N.
Francois
,
R.
Cruikshank
,
A.
Herring
,
A.
Kingston
,
S.
Webster
,
M.
Knackstedt
, and
M.
Saadatfar
, “
A versatile microtomography system to study in situ the failure and fragmentation in geomaterials
,”
Rev. Sci. Instrum.
93
,
083704
(
2022
).
28.
G.
Shahin
and
R. C.
Hurley
, “
HP-TACO: A high-pressure triaxial compression apparatus for in situ x-ray measurements in geomaterials
,”
Rev. Sci. Instrum.
93
,
113907
(
2022
).
29.
M.
Becker
, “
Accessing 32-bit DLLs from 64-bit code
,”
2007
https://blog.mattmags.com/2007/06/30/accessing-32-bit-dlls-from-64-bit-code/ (accessed May 27, 2022).
30.
M.
Dunn
, “
Introduction to COM - what it is and how to use it
,”
2000
https://www.codeproject.com/Articles/633/Introduction-to-COM-What-It-Is-and-How-to-Use-It (accessed May 27, 2022).
31.
S.
Garcea
,
Y.
Wang
, and
P.
Withers
, “
X-ray computed tomography of polymer composites
,”
Compos. Sci. Technol.
156
,
305
319
(
2018
).
32.
P.
Gajjar
,
J. S.
Jørgensen
,
J. R. A.
Godinho
,
C. G.
Johnson
,
A.
Ramsey
, and
P. J.
Withers
, “
New software protocols for enabling laboratory based temporal CT
,”
Rev. Sci. Instrum.
89
,
093702
(
2018
).
33.
J.
Vlassenbroeck
,
M.
Dierick
,
B.
Masschaele
,
V.
Cnudde
,
L.
Van Hoorebeke
, and
P.
Jacobs
, “
Software tools for quantification of X-ray microtomography at the UGCT
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
580
,
442
445
(
2007
).
34.
L. A.
Feldkamp
,
L. C.
Davis
, and
J. W.
Kress
, “
Practical cone-beam algorithm
,”
J. Opt. Soc. Am. A
1
,
612
(
1984
).
35.
B. M.
Patterson
,
K.
Henderson
,
R. D.
Gilbertson
,
S.
Tornga
,
N. L.
Cordes
,
M. E.
Chavez
, and
Z.
Smith
, “
Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing
,”
Microsc. Microanal.
20
,
1284
1293
(
2014
).
36.
J.
Adrien
,
E.
Maire
,
N.
Gimenez
, and
V.
Sauvantmoynot
, “
Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography
,”
Acta Mater.
55
,
1667
1679
(
2007
).
37.
J. A.
Elliott
,
A. H.
Windle
,
J. R.
Hobdell
,
G.
Eeckhaut
,
R. J.
Oldman
,
W.
Ludwig
,
E.
Boller
,
P.
Cloetens
, and
J.
Baruchel
, “
In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography
,”
J. Mater. Sci.
37
,
1547
1555
(
2002
).
38.
N.
Mills
,
Polymer Foams Handbook
(
Elsevier
,
2007
).
39.
Object Research Systems (ORS) Inc., Montreal, Canada
, “
Dragonfly 2020.2.0.941 (computer software)
,”
2020
, available online: http://www.theobjects.com/dragonfly.
40.
N.
Otsu
, “
A threshold selection method from gray-level histograms
,”
IEEE Trans. Syst. Man Cybern.
9
,
62
66
(
1979
).
41.
S.
Diebels
and
H.
Steeb
, “
The size effect in foams and its theoretical and numerical investigation
,”
Proc. R. Soc. London, Ser. A
458
,
2869
2883
(
2002
).
42.
S.
Diebels
and
H.
Steeb
, “
Stress and couple stress in foams
,”
Comput. Mater. Sci.
28
,
714
722
(
2003
).
43.
B. M.
de Gooijer
,
J.
Havinga
,
H. J. M.
Geijselaers
, and
A. H.
van den Boogaard
, “
Evaluation of POD based surrogate models of fields resulting from nonlinear FEM simulations
,”
Adv. Model. Simul. Eng. Sci.
8
,
25
(
2021
).
44.
M.
Ruf
and
H.
Steeb
, “
In situ micro-XRCT data sets of an open-cell polyurethane foam sample under combined loading conditions (compression + torsion, tension)
,”
DaRUS
(
2023
).
45.
M.
Ruf
,
K.
Taghizadeh
, and
H.
Steeb
, “
micro-XRCT data sets and in situ measured ultrasonic wave propagation of a pre-stressed monodisperse rubber and glass particle mixture with 30% volume rubber content
,”
DaRUS
(
2022
).
46.
X.
Jia
,
C.
Caroli
, and
B.
Velicky
, “
Ultrasound propagation in externally stressed granular media
,”
Phys. Rev. Lett.
82
,
1863
(
1999
).
47.
X.
Jia
and
P.
Mills
, “
Sound propagation in dense granular materials
,” in
Powders and Grains 2001
(
Balkema
,
2001
), pp.
105
112
.
48.
E.
Somfai
,
J.-N.
Roux
,
J. H.
Snoeijer
,
M.
Van Hecke
, and
W.
Van Saarloos
, “
Elastic wave propagation in confined granular systems
,”
Phys. Rev. E
72
,
021301
(
2005
).
49.
K.
Taghizadeh
,
H.
Steeb
,
S.
Luding
, and
V.
Magnanimo
, “
Elastic waves in particulate glass-rubber mixtures
,”
Proc. R. Soc. A
477
,
20200834
(
2021
).
50.
M.
Ruf
,
K.
Taghizadeh
, and
H.
Steeb
, “
Multi-scale characterization of granular media by in situ laboratory X-ray computed tomography
,”
GAMM-Mitt.
45
,
e20220001
(
2022
).
51.
K.
Taghizadeh
,
M.
Ruf
,
S.
Luding
, and
H.
Steeb
, “
X-ray 3D imaging–based microunderstanding of granular mixtures: Stiffness enhancement by adding small fractions of soft particles
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2219999120
(
2023
).
52.
K.
Taghizadeh
,
H.
Steeb
,
V.
Magnanimo
, and
S.
Luding
, “
Elastic waves in particulate glass-rubber mixture: Experimental and numerical investigations/studies
,”
EPJ Web Conf.
140
,
12019
(
2017
).
53.
J.
O’Donovan
,
C.
O’Sullivan
,
G.
Marketos
, and
D.
Muir Wood
, “
Analysis of bender element test interpretation using the discrete element method
,”
Granular Matter
17
,
197
216
(
2015
).
54.
B. K.
Bay
,
T. S.
Smith
,
D. P.
Fyhrie
, and
M.
Saad
, “
Digital volume correlation: Three-dimensional strain mapping using X-ray tomography
,”
Exp. Mech.
39
,
217
226
(
1999
).
55.
T. S.
Smith
,
B. K.
Bay
, and
M. M.
Rashid
, “
Digital volume correlation including rotational degrees of freedom during minimization
,”
Exp. Mech.
42
,
272
278
(
2002
).
56.
S.
Roux
,
F.
Hild
,
P.
Viot
, and
D.
Bernard
, “
Three-dimensional image correlation from X-ray computed tomography of solid foam
,”
Composites, Part A
39
,
1253
1265
(
2008
).
57.
O.
Stamati
,
E.
Andò
,
E.
Roubin
,
R.
Cailletaud
,
M.
Wiebicke
,
G.
Pinzon
,
C.
Couture
,
R.
Hurley
,
R.
Caulk
,
D.
Caillerie
,
T.
Matsushima
,
P.
Bésuelle
,
F.
Bertoni
,
T.
Arnaud
,
A.
Laborin
,
R.
Rorato
,
Y.
Sun
,
A.
Tengattini
,
O.
Okubadejo
,
J.-B.
Colliat
,
M.
Saadatfar
,
F.
Garcia
,
C.
Papazoglou
,
I.
Vego
,
S.
Brisard
,
J.
Dijkstra
, and
G.
Birmpilis
, “
spam: Software for practical analysis of materials
,”
J. Open Source Softw.
5
,
2286
(
2020
).
58.
M.
Ruf
and
H.
Steeb
, “
In situ performed fracturing experiment of a limestone sample using an X-ray transparent triaxial cell: Micro-XRCT data sets and measurement data
,”
DaRUS
(
2023
).
59.
F.
Fusseis
,
H.
Steeb
,
X.
Xiao
,
W. l.
Zhu
,
I. B.
Butler
,
S.
Elphick
, and
U.
Mäder
, “
A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions
,”
J. Synchrotron Radiat.
21
,
251
253
(
2014
).
60.
M. E.
French
,
D. F.
Boutt
, and
L. B.
Goodwin
, “
Sample dilation and fracture in response to high pore fluid pressure and strain rate in quartz-rich sandstone and siltstone
,”
J. Geophys. Res.: Solid Earth
117
,
B03215
(
2012
).
61.
M.
Umar
,
K. A.
Kassim
, and
K. T.
Ping Chiet
, “
Biological process of soil improvement in civil engineering: A review
,”
J. Rock Mech. Geotech. Eng.
8
,
767
774
(
2016
).
62.
C.
Kluge
,
G.
Blöcher
,
H.
Hofmann
,
A.
Barnhoorn
,
J.
Schmittbuhl
, and
D.
Bruhn
, “
The stress-memory effect of fracture stiffness during cyclic loading in low-permeability sandstone
,”
J. Geophys. Res.: Solid Earth
126
,
e2020JB021469
, (
2021
).
63.
B.
Li
,
X.
Cui
,
L.
Zou
, and
V.
Cvetkovic
, “
On the relationship between normal stiffness and permeability of rock fractures
,”
Geophys. Res. Lett.
48
,
e2021GL095593
, (
2021
).
64.
N.-S.
Cheng
, “
Formula for the viscosity of a glycerol-water mixture
,”
Ind. Eng. Chem. Res.
47
,
3285
3288
(
2008
).
65.
C.
McPhee
,
J.
Reed
, and
I.
Zubizarreta
, “
Geomechanics tests
,” in
Developments in Petroleum Science
(
Elsevier
,
2015
), pp.
671
779
.
66.
W.
Li
,
X.
An
, and
H.
Li
, “
Limestone mechanical deformation behavior and failure mechanisms: A review
,”
Acta Geochim.
37
,
153
170
(
2018
).
67.
B. M.
Das
,
Principles of Geotechnical Engineering
,
7th ed.
(
Wadsworth Publishing
,
Belmont, CA
,
2009
).
68.
H.
Deng
,
J. P.
Fitts
, and
C. A.
Peters
, “
Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation
,”
Comput. Geosci.
20
,
231
244
(
2016
).
69.
J. F.
Van Stappen
,
T.
De Kock
,
G.
De Schutter
, and
V.
Cnudde
, “
Uniaxial compressive strength measurements of limestone plugs and cores: A size comparison and X-ray CT study
,”
Bull. Eng. Geol. Environ.
78
,
5301
5310
(
2019
).
70.
S. T.
Smith
,
Flexures
(
CRC Press
,
2000
).
71.
C.
Jiao
,
Z.
Wang
,
B.
Lv
,
G.
Wang
, and
W.
Yue
, “
Design and analysis of a novel flexure-based xy micropositioning stage
,”
Appl. Sci.
10
,
8336
(
2020
).
72.
S. N.
Olufsen
,
K. R.
Tekseth
,
D. W.
Breiby
,
A. H.
Clausen
, and
O. S.
Hopperstad
, “
A technique for in situ X-ray computed tomography of deformation-induced cavitation in thermoplastics
,”
Polym. Test.
91
,
106834
(
2020
).
You do not currently have access to this content.