In response to the problem that the actual amplification ratio of the compliant motion amplification mechanism cannot be further improved, this paper introduces a two-stage amplification microgripper based on structural stiffness that is driven by pneumatics. The mechanism not only has the advantages of good symmetry, compact structure, and large output displacement but can also reduce the relative error of the theoretical and experimental amplification ratios. The first-stage mechanism selects high-stiffness mechanisms and high-stiffness flexure hinges, and the second-stage mechanism uses low-stiffness mechanisms and low-stiffness flexure hinges. The arrangement order of the mechanism is determined by the working mode analysis. The specific dimensions of the mechanism and flexure hinges are determined through structural size optimization so that the amplification performance of the mechanism will be optimal. The experimental results show that the displacement amplification ratio of both the opening and closing of the microgripper is 41.8.

1.
C.
Meng
,
P. C. V.
Thrane
,
F.
Ding
,
J.
Gjessing
,
M.
Thomaschewski
,
C.
Wu
,
C.
Dirdal
, and
S. I.
Bozhevolnyi
, “
Dynamic piezoelectric MEMS-based optical metasurfaces
,”
Sci. Adv.
7
(
26
),
eabg5639
(
2021
).
2.
S.
Zhang
,
M.
Bick
,
X.
Xiao
,
G.
Chen
,
A.
Nashalian
, and
J.
Chen
, “
Leveraging triboelectric nanogenerators for bioengineering
,”
Matter
4
(
3
),
845
887
(
2021
).
3.
S.
Han
,
N.
Mannan
,
D. C.
Stein
,
K. R.
Pattipati
, and
G. M.
Bollas
, “
Classification and regression models of audio and vibration signals for machine state monitoring in precision machining systems
,”
J. Manuf. Syst.
61
,
45
53
(
2021
).
4.
A.
Bhat
,
S.
Budholiya
,
S.
Aravind Raj
,
M. T. H.
Sultan
,
D.
Hui
,
A. U.
Md Shah
, and
S. N. A.
Safri
, “
Review on nanocomposites based on aerospace applications
,”
Nanotechnol. Rev.
10
(
1
),
237
253
(
2021
).
5.
H.
Wu
,
L.
Lai
, and
L.
Zhu
, “
Analytical model and experimental verification of an elliptical bridge-type compliant displacement amplification mechanism
,”
Rev. Sci. Instrum.
92
(
5
),
055109
(
2021
).
6.
S.
Wang
,
X.
Yang
,
Y.
Chen
, and
J.
Ma
, “
A theoretical design of a bellow-shaped statically balanced compliant mechanism
,”
Mech. Mach. Theory
161
,
104295
(
2021
).
7.
M.-Q.
Niu
and
L.-Q.
Chen
, “
Nonlinear vibration isolation via a compliant mechanism and wire ropes
,”
Nonlinear Dyn.
107
(
2
),
1687
1702
(
2022
).
8.
K.
Kong
,
G.
Chen
, and
G.
Hao
, “
Kinetostatic modeling and optimization of a novel horizontal-displacement compliant mechanism
,”
J. Mech. Rob.
11
(
6
),
064502
(
2019
).
9.
X.
Chen
,
Z.
Xie
,
R.
Shen
,
X.
Feng
,
H.
Tan
, and
K.
Tai
, “
High-magnification microgripper with low output displacement loss
,”
Sens. Actuators, A
357
,
114402
(
2023
).
10.
X.
Chen
,
Z.
Deng
,
S.
Hu
,
J.
Gao
, and
X.
Gao
, “
Design of a compliant mechanism based four-stage amplification piezoelectric-driven asymmetric microgripper
,”
Micromachines
11
(
1
),
25
(
2019
).
11.
J.
Pinskier
,
B.
Shirinzadeh
,
M.
Ghafarian
,
T. K.
Das
,
A.
Al-Jodah
, and
R.
Nowell
, “
Topology optimization of stiffness constrained flexure-hinges for precision and range maximization
,”
Mech. Mach. Theory
150
,
103874
(
2020
).
12.
W.
Dong
,
F.
Chen
,
F.
Gao
,
M.
Yang
,
L.
Sun
,
Z.
Du
,
J.
Tang
, and
D.
Zhang
, “
Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges
,”
Precis. Eng.
54
,
171
181
(
2018
).
13.
X.
Lu
,
Q.
Gao
,
Q.
Gao
,
Y.
Yu
,
X.
Zhang
,
G.
Qiao
,
H.
Zhao
, and
T.
Cheng
, “
Design, modeling, and performance of a bidirectional stick-slip piezoelectric actuator with coupled asymmetrical flexure hinge mechanisms
,”
J. Intell. Mater. Syst. Struct.
31
(
17
),
1961
1972
(
2020
).
14.
T.
Cheng
,
M.
He
,
H.
Li
,
X.
Lu
,
H.
Zhao
, and
H.
Gao
, “
A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism
,”
IEEE Trans. Ind. Electron.
64
(
7
),
5545
5552
(
2017
).
15.
G.
Chen
and
L. L.
Howell
, “
Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms
,”
Precis. Eng.
33
(
3
),
268
274
(
2009
).
16.
X.
Chen
,
Z.
Xie
, and
H.
Tan
, “
Design, analysis, and test of a novel cylinder-driven mode applied to microgripper
,”
J. Mech. Des.
144
(
5
),
053302
(
2022
).
17.
M.
Nalbach
,
F.
Chalupa-Gantner
,
F.
Spoerl
,
V.
de Bar
,
B.
Baumgartner
,
O. G.
Andriotis
,
S.
Ito
,
A.
Ovsianikov
,
G.
Schitter
, and
P. J.
Thurner
, “
Instrument for tensile testing of individual collagen fibrils with facile sample coupling and uncoupling
,”
Rev. Sci. Instrum.
93
(
5
),
054103
(
2022
).
18.
X.
Chen
,
Z.
Deng
,
S.
Hu
,
J.
Gao
, and
X.
Gao
, “
Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper
,”
Microsyst. Technol.
26
,
2809
2816
(
2020
).
19.
Y.
Hao
,
C.
Wang
,
Z.
Sun
,
W.
Yuan
, and
H.
Chang
, “
Rotatory microgripper based on a linear electrostatic driving scheme
,”
Microelectron. Eng.
248
,
111601
(
2021
).
20.
A. A.
Felix
,
D.
Colón
,
B. M.
Verona
,
L. W. S. L.
Ramos
,
H.
Cobas-Gomez
, and
M. R.
Gongora-Rubio
, “
Identification and robust controllers for an electrostatic microgripper
,”
J. Vib. Eng. Technol.
9
,
389
397
(
2021
).
21.
H.
Majidi Fard-Vatan
and
M.
Hamedi
, “
Design, analysis and fabrication of a novel hybrid electrothermal microgripper in microassembly cell
,”
Microelectron. Eng.
231
,
111374
(
2020
).
22.
L.
Lin
,
H.
Wu
,
L.
Xue
,
H.
Shen
,
H.
Huang
, and
L.
Chen
, “
Heat transfer scale effect analysis and parameter measurement of an electrothermal microgripper
,”
Micromachines
12
(
3
),
309
(
2021
).
23.
Y.
Lu
,
Z.
Xie
,
J.
Wang
,
H.
Yue
,
M.
Wu
, and
Y.
Liu
, “
A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator
,”
Int. J. Mech. Sci.
159
,
74
80
(
2019
).
24.
H.
Llewellyn-Evans
,
C. A.
Griffiths
, and
A. A.
Fahmy
, “
Design process and simulation testing of a shape memory alloy actuated robotic microgripper
,”
Microsyst. Technol.
26
,
885
900
(
2020
).
25.
C.
Liang
,
F.
Wang
,
B.
Shi
,
Z.
Huo
,
K.
Zhou
,
Y.
Tian
, and
D.
Zhang
, “
Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation
,”
Sens. Actuators, A
269
,
227
237
(
2018
).
26.
Y.
Zhao
,
X.
Huang
,
Y.
Liu
,
G.
Wang
, and
K.
Hong
, “
Design and control of a piezoelectric-driven microgripper perceiving displacement and gripping force
,”
Micromachines
11
(
2
),
121
(
2020
).
27.
Z.
Lyu
,
Q.
Xu
, and
L.
Zhu
, “
Design and development of a new piezoelectric-actuated biaxial compliant microgripper with long strokes
,”
IEEE Trans. Autom. Sci. Eng.
20
,
206
(
2022
).
28.
Z.
Lyu
,
Z.
Wu
, and
Q.
Xu
, “
Design and development of a novel piezoelectrically actuated asymmetrical flexible microgripper
,”
Mech. Mach. Theory
171
,
104736
(
2022
).
29.
T. K.
Das
,
B.
Shirinzadeh
,
A.
Al-Jodah
,
M.
Ghafarian
, and
J.
Pinskier
, “
A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation
,”
Mech. Mach. Theory
155
,
104069
(
2021
).
30.
C.
Shi
,
X.
Dong
, and
Z.
Yang
, “
A microgripper with a large magnification ratio and high structural stiffness based on a flexure-enabled mechanism
,”
IEEE/ASME Trans. Mechatron.
26
(
6
),
3076
3086
(
2021
).
31.
W.
Chen
,
X.
Zhang
,
H.
Li
,
J.
Wei
, and
S.
Fatikow
, “
Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper
,”
Mech. Mach. Theory
118
,
32
52
(
2017
).
32.
W.
Chen
,
X.
Zhang
, and
S.
Fatikow
, “
Design, modeling and test of a novel compliant orthogonal displacement amplification mechanism for the compact micro-grasping system
,”
Microsyst. Technol.
23
,
2485
2498
(
2017
).
33.
L.
Qiu
,
C.
Li
,
S.
Dai
, and
Y.
Yu
, “
Research on the line-arc-line constant-torque flexure hinge (LAL-CTFH) based on improved pseudo-rigid-body model (PRBM)
,”
Mech. Mach. Theory
174
,
104878
(
2022
).
34.
L. L.
Howell
, “
Compliant mechanisms
,” in
21st Century Kinematics: The 2012 NSF Workshop
(
Springer
,
London
,
2013
), pp.
189
216
.
35.
Z.
Ye
,
C.
Zhou
,
J.
Jin
,
P.
Yu
, and
F.
Wang
, “
A novel ring-beam piezoelectric actuator for small-size and high-precision manipulator
,”
Ultrasonics
96
,
90
95
(
2019
).
36.
E.
Leroy
,
R.
Hinchet
, and
H.
Shea
, “
Multimode hydraulically amplified electrostatic actuators for wearable haptics
,”
Adv. Mater.
32
(
36
),
2002564
(
2020
).
37.
B.
Hoxhold
and
S.
Büttgenbach
, “
Easily manageable, electrothermally actuated silicon micro gripper
,”
Microsyst. Technol.
16
,
1609
1617
(
2010
).
38.
L.
Manfredi
and
A.
Cuschieri
, “
Design of a 2 DOFs mini hollow joint actuated with SMA wires
,”
Materials
11
(
10
),
2014
(
2018
).
You do not currently have access to this content.