A high gain and high aperture efficiency metamaterial (MTM) antenna is applied to a solar telescope in this paper. First, a portable solar telescope including the MTM antenna and a receiving system is presented. Next, the theory of the MTM antenna is proposed and analyzed based on the ray-tracing model. The designed MTM antenna is composed of a dual circularly polarized Fabry–Pérot resonant antenna (FPRA) and four phase correction metasurfaces (PCMs). The proposed PCMs act as the reflection surface and the phase correction surface at the same time. Every PCM consists of 2 × 18 optimized artificial magnetic conductor (AMC) units. To solve the parallel incidence and narrow bandwidth problems of AMC units, a nonuniform partially reflective surface is designed. Compared with traditional FPRA, the proposed MTM antenna has an increase in peak gain of 37.5% and an aperture efficiency of 11.4%. Then, a receiving system composed of the receiver, equatorial mount, data acquisition module, and display module is presented for solar radio signal processing. Finally, the designed MTM antenna and solar telescope are simulated and measured. A good agreement between the simulation and measurement is observed and can be used to verify this design.

1.
G. A.
Shanmugha Sundaram
and
K. R.
Subramanian
, “
Frequency and time profiles of metric wave isolated Type I solar noise storm bursts at high spectral and temporal resolution
,”
Mon. Not. R. Astron. Soc.
359
(
2
),
580
588
(
2005
).
2.
A. I.
Sulyman
,
H.
Seleem
,
A.
Alwarafy
,
K. M.
Humadi
, and
A.
Alsanie
, “
Effects of solar radio emissions on outdoor propagation path loss models at 60 GHz bands for access/backhaul links and D2D communications
,”
IEEE Trans. Antennas Propag.
65
(
12
),
6624
6635
(
2017
).
3.
M. V.
Ivashina
,
O.
Iupikov
,
R.
Maaskant
,
W. A.
van Cappellen
, and
T.
Oosterloo
, “
An optimal beamforming strategy for wide-field surveys with phased-array-fed reflector antennas
,”
IEEE Trans. Antennas Propag.
59
(
6
),
1864
1875
(
2011
).
4.
S.
Zhu
,
H.
Liu
,
Z.
Chen
, and
P.
Wen
, “
A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application
,”
IEEE Antennas Wireless Propag. Lett.
17
(
5
),
776
779
(
2018
).
5.
S.
Alani
,
Z.
Zakaria
,
T.
Saeidi
,
A.
Ahmad
,
H.
Alsariera
,
O. S.
Al-Heety
, and
S. N.
Mahmood
, “
Electronic bandgap miniaturized UWB antenna for near-field microwave investigation of skin
,”
AIP Adv.
11
(
3
),
035228
(
2021
).
6.
X. H.
Zhao
,
M. Q.
Liu
,
Y. F.
Sun
,
L.
Xu
,
Q.
Zhang
,
C. W.
Yuan
, and
J. D.
Zhang
, “
Design and experimental demonstration of a beam scanning lens antenna
,”
Rev. Sci. Instrum.
93
(
8
),
084703
(
2022
).
7.
X. H.
Zhao
,
L.
Xu
,
J. D.
Zhang
,
C. W.
Yuan
,
Q.
Zhang
, and
Y. F.
Sun
, “
A dielectric embedded reflectarray for high-power microwave application
,”
Rev. Sci. Instrum.
93
(
6
),
064703
(
2022
).
8.
W.
Yuan
,
J. F.
Chen
,
W. X.
Tang
,
L.
Wang
,
T. J.
Cui
, and
Q.
Cheng
, “
Fabry-Pérot resonator antenna in equivalent-medium metamaterials
,”
IEEE Trans. Antennas Propag.
69
(
11
),
7906
7911
(
2021
).
9.
L.
Zhu
,
Y.
Liu
,
J.
Liang
,
Q.
Zhang
,
W.
Zhang
, and
Y.
Gao
, “
A broadband Fabry–Perot resonator antenna using partially reflecting surface with positive reflection phase gradient
,”
AIP Adv.
12
(
7
),
075316
(
2022
).
10.
A. T.
Almutawa
,
A.
Hosseini
,
D. R.
Jackson
, and
F.
Capolino
, “
Leaky-wave analysis of wideband planar Fabry–Pérot cavity antennas formed by a thick PRS
,”
IEEE Trans. Antennas Propag.
67
(
8
),
5163
5175
(
2019
).
11.
R.
Gardelli
,
M.
Albani
, and
F.
Capolino
, “
Array thinning by using antennas in a Fabry–Perot cavity for gain enhancement
,”
IEEE Trans. Antennas Propag.
54
(
7
),
1979
1990
(
2006
).
12.
Y.-F.
Lu
and
Y.-C.
Lin
, “
A hybrid approach for finite-size Fabry-Pérot antenna design with fast and accurate estimation on directivity and aperture efficiency
,”
IEEE Trans. Antennas Propag.
61
(
11
),
5395
5401
(
2013
).
13.
A. P.
Feresidis
and
J. C.
Vardaxoglou
, “
High gain planar antenna using optimised partially reflective surfaces
,”
IET Microwaves, Antennas Propag.
148
(
6
),
345
350
(
2001
).
14.
Y.
Ge
,
Z.
Sun
,
Z.
Chen
, and
Y.
Chen
, “
A high-gain wideband low-profile Fabry–Perot resonator antenna with a conical short horn
,”
IEEE Antennas Wireless Propag. Lett.
15
,
1889
1892
(
2016
).
15.
A.
Foroozesh
and
L.
Shafai
, “
Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design
,”
IEEE Trans. Antennas Propag.
58
(
2
),
258
270
(
2010
).
16.
A. K.
Singh
,
M. P.
Abegaonkar
, and
S. K.
Koul
, “
High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate
,”
IEEE Antennas Wireless Propag. Lett.
16
,
2388
2391
(
2017
).
17.
L.
Zhang
,
X.
Wan
,
S.
Liu
,
J. Y.
Yin
,
Q.
Zhang
,
H. T.
Wu
, and
T. J.
Cui
, “
Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface
,”
IEEE Trans. Antennas Propag.
65
(
7
),
3374
3383
(
2017
).
18.
Y.-H.
Yu
,
Z.-Y.
Zong
,
W.
Wu
,
Q.
Chen
,
M.
Wang
, and
D.-G.
Fang
, “
1-D wide-angle beam scanning linear phased array with enhanced gain by using 3D printed dielectric slab superstrate
,”
IEEE Antennas Wireless Propag. Lett.
20
(
5
),
688
692
(
2021
).
19.
Y.
Al-Alem
and
A. A.
Kishk
, “
Low-cost high-gain superstrate antenna array for 5G applications
,”
IEEE Trans. Antennas Propag.
19
(
11
),
1920
1923
(
2020
).
20.
Q.
Guo
and
H.
Wong
, “
A millimeter-wave Fabry–Pérot cavity antenna using Fresnel zone plate integrated PRS
,”
IEEE Trans. Antennas Propag.
68
(
1
),
564
568
(
2020
).
21.
C.
Ponti
,
P.
Baccarelli
,
S.
Ceccuzzi
, and
G.
Schettini
, “
Tapered all-dielectric EBGs with 3-D additive manufacturing for high-gain resonant-cavity antennas
,”
IEEE Trans. Antennas Propag.
69
(
5
),
2473
2480
(
2021
).
22.
M. U.
Afzal
and
K. P.
Esselle
, “
Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas
,”
J. Appl. Phys.
117
(
21
),
214902
(
2015
).
23.
L.
Zhou
,
X.
Duan
,
Z.
Luo
,
Y.
Zhou
, and
X.
Chen
, “
High directivity FabrysPerot antenna with a nonuniform partially reflective surface and a phase correcting structure
,”
IEEE Trans. Antennas Propag.
68
(
11
),
7601
7606
(
2020
).
24.
G. V.
Trentini
, “
Partially reflecting sheet arrays
,”
IRE Trans. Antennas Propag.
4
(
4
),
666
671
(
1956
).
25.
A.
Ourir
,
A.
de Lustrac
, and
J.-M.
Lourtioz
, “
All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas
,”
Appl. Phys. Lett.
88
(
8
),
084103
(
2006
).
26.
A.
Foroozesh
and
L.
Shafai
, “
Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas
,”
IEEE Trans. Antennas Propag.
59
(
1
),
4
20
(
2011
).
27.
Z.
Shang
et al, “
A broadband solar radio dynamic spectrometer working in the millimeter-wave band
,”
Astrophys. J., Suppl. Ser.
258
(
2
),
25
(
2022
).
28.
Q. Y.
Guo
,
Q. W.
Lin
, and
H.
Wong
, “
A high gain millimeter-wave circularly polarized Fabry–Pérot antenna using PRS-integrated polarizer
,”
IEEE Trans. Antennas Propag.
69
(
2
),
1179
1183
(
2021
).
29.
R.
Orr
,
G.
Goussetis
, and
V.
Fusco
, “
Design method for circularly polarized Fabry–Perot cavity antennas
,”
IEEE Trans. Antennas Propag.
62
(
1
),
19
26
(
2014
).
You do not currently have access to this content.