The small current detection circuit is the core component of the accurate detection of the nanopore sensor. In this paper, a compact, low-noise, and high-speed trans-impedance amplifier is built for the nanopore detection system. The amplifier consists of two amplification stages. The first stage performs low-noise trans-impedance amplification by using ADA4530-1, which is a high-performance FET operational amplifier, and a high-ohm feedback resistor of 1 GΩ. The high pass shelf filter in the second stage recovers the higher frequency above the 3 dB cutoff in the first stage to extend the maximum bandwidth up to 50 kHz. The amplifier shows a low noise below sub-2 pA rms when tuned to have a bandwidth of around 5 kHz. It also guarantees a stable frequency response in the nanopore sensor.

1.
L.
Xue
,
H.
Yamazaki
,
R.
Ren
,
M.
Wanunu
,
A. P.
Ivanov
, and
J. B.
Edel
, “
Solid-state nanopore sensors
,”
Nat. Rev. Mater.
5
,
931
951
(
2020
).
2.
Y.
Zhao
,
M.
Iarossi
,
A. F. D.
Fazio
,
J. A.
Huang
, and
F. D.
Angelis
, “
Label-free optical analysis of biomolecules in solid-state nanopores: Toward single-molecule protein sequencing
,”
ACS Photonics
9
,
730
742
(
2022
).
3.
Z.
Dong
,
E.
Kennedy
,
M.
Hokmabadi
, and
G.
Timp
, “
Discriminating residue substitutions in a single protein molecule using a sub-nanopore
,”
Acs Nano
11
,
5440
5452
(
2017
).
4.
Y.
Wang
,
Y.
Zhao
,
A.
Bollas
,
Y.
Wang
, and
K. F.
Au
, “
Nanopore sequencing technology, bioinformatics and applications
,”
Nat. Biotechnol.
39
,
1348
1365
(
2021
).
5.
P.
Xia
,
M. A. R.
Laskar
, and
C.
Wang
, “
Wafer-scale fabrication of uniform, micrometer-sized, triangular membranes on sapphire for high-speed protein sensing in a nanopore
,”
ACS Appl. Mater. Interfaces
15
,
2656
2664
(
2023
).
6.
J. P.
Fried
,
J. L.
Swett
,
B. P.
Nadappuram
,
A.
Fedosyuk
,
A.
Gee
,
O. E.
Dyck
,
J. R.
Yates
,
A. P.
Ivanov
,
J. B.
Edel
, and
J. A.
Mol
, “
Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes
,”
Nano Res.
15
,
9881
9889
(
2022
).
7.
C.
Dekker
, “
Solid-state nanopores
,”
Nat. Nanotechnol.
2
,
209
215
(
2007
).
8.
A. J.
Storm
,
J. H.
Chen
,
X. S.
Ling
,
H. W.
Zandbergen
, and
C.
Dekker
, “
Fabrication of solid-state nanopores with single-nanometre precision
,”
Nat. Mater.
2
,
537
540
(
2003
).
9.
M.
Rahman
,
M. J. N.
Sampad
,
A.
Hawkins
, and
H.
Schmidt
, “
Recent advances in integrated solid-state nanopore sensors
,”
Lab On  a Chip
21
,
3030
3052
(
2021
).
10.
J. K.
Rosenstein
,
M.
Wanunu
,
C. A.
Merchant
,
M.
Drndic
, and
K. L.
Shepard
, “
Integrated nanopore sensing platform with sub-microsecond temporal resolution
,”
Nat. Methods
9
,
487
492
(
2011
).
11.
A. J. W.
Hartel
,
S.
Shekar
,
P.
Ong
,
I.
Schroeder
,
G.
Thiel
, and
K. L.
Shepard
, “
High bandwidth approaches in nanopore and ion channel recordings - A tutorial review
,”
Anal. Chim. Acta
1061
,
13
27
(
2019
).
12.
R. M. M.
Smeets
,
U. F.
Keyser
,
N. H.
Dekker
, and
C.
Dekker
, “
Noise in solid-state nanopores
,”
Proc. Natl. Acad. Sci.
105
,
417
421
(
2008
).
13.
J.
Rosenstein
,
M.
Wanunu
,
M.
Drndic
, and
K. L.
Shepard
, “
High-bandwidth solid-state nanopore sensors
,”
Biophys. J.
102
,
428A
(
2012
).
14.
S.
Dai
and
J. K.
Rosenstein
, “
A 15-v bidirectional current clamp circuit for integrated patch clamp electrophysiology
,”
IEEE Trans. Circuits Syst.
64
,
1287
1291
(
2017
).
15.
J. R.
Tyson
,
N. J.
O’Neil
,
M.
Jain
,
H. E.
Olsen
,
P.
Hieter
, and
T. P.
Snutch
, “
MinION-based long-read sequencing and assembly extends the caenorhabditis elegans reference genome
,”
Genome Res.
28
,
266
274
(
2018
).
16.
C.-L.
Hsu
,
H.
Jiang
,
A. G.
Venkatesh
, and
D. A.
Hall
, “
A hybrid semi-digital transimpedance amplifier with noise cancellation technique for nanopore-based dna sequencing
,”
IEEE Trans. Biomed. Circuits Syst.
9
,
652
661
(
2015
).
17.
G.
Giusi
,
G.
Cannatà
,
G.
Scandurra
, and
C.
Ciofi
, “
Ultra low noise large-bandwidth transimpedance amplifier
,”
Int. J. Circuit Theory Appl.
43
,
1455
1473
(
2015
).
18.
M.
Carlà
,
L.
Lanzi
,
E.
Pallecchi
, and
G.
Aloisi
, “
Development of an ultralow current amplifier for scanning tunneling microscopy
,”
Rev. Sci. Instrum.
75
,
497
501
(
2004
).
19.
L.
Liu
,
H.
Yao
, and
Q.
Liu
, “
Large bandwidth trans-impedance amplifier for ion current nanopore system detection platform
,”
J. Nanosci. Nanotechnol.
16
,
12498
12506
(
2016
).
20.
R.
Gao
,
Y.-L.
Ying
,
B.-Y.
Yan
, and
Y.-T.
Long
, “
An integrated current measurement system for nanopore analysis
,”
Chin. Sci. Bull.
59
,
4968
4973
(
2014
).
21.
A.
Strickholm
, “
A hybrid patch clamp amplifier
,”
J. Neurosci. Methods
29
,
59
67
(
1989
).
22.
D.
Kim
,
B.
Goldstein
,
W.
Tang
,
F. J.
Sigworth
, and
E.
Culurciello
, “
Noise analysis and performance comparison of low current measurement systems for biomedical applications
,”
IEEE Trans. Biomed. Circuits Syst.
7
,
52
62
(
2013
).
23.
S.
Shekar
,
K.
Jayant
,
M. A.
Rabadan
,
R.
Tomer
,
R.
Yuste
, and
K. L.
Shepard
, “
A miniaturized multi-clamp CMOS amplifier for intracellular neural recording
,”
Nat. Electron.
2
(
8
),
361
368
(
2019
).
24.
V.
Shlyonsky
and
D.
Gall
, “
The OpenPicoAmp-100k: An open-source high-performance amplifier for single channel recording in planar lipid bilayers
,”
Biophys. J.
118
,
316a
(
2020
).
25.
C.
Seidl
,
J.
Knorr
, and
H.
Zimmermann
, “
Simple feedback network for bandwidth enhancement of transimpedance amplifiers
,”
Electron. Lett.
39
,
1849
1851
(
2003
).
26.
R.
Akahori
,
I.
Yanagi
,
Y.
Goto
,
K.
Harada
,
T.
Yokoi
, and
K.-i.
Takeda
, “
Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion
,”
Sci. Rep.
7
,
9073
(
2017
).
27.
S.
Fang
,
B.
Yin
,
W.
Xie
,
D.
Zhou
,
P.
Tang
,
S.
He
,
J.
Yuan
, and
D.
Wang
, “
A novel dielectric breakdown apparatus for solid-state nanopore fabrication with transient high electric field
,”
Rev. Sci. Instrum.
91
,
093203
(
2020
).
28.
A. T.
Carlsen
,
K.
Briggs
,
A. R.
Hall
, and
V.
Tabard-Cossa
, “
Solid-state nanopore localization by controlled breakdown of selectively thinned membranes
,”
Nanotechnology
28
,
085304
(
2017
).
29.
S. W.
Kowalczyk
,
A. Y.
Grosberg
,
Y.
Rabin
, and
C.
Dekker
, “
Modeling the conductance and DNA blockade of solid-state nanopores
,”
Nanotechnology
22
,
315101
(
2011
).
30.
D.-J.
Kim
and
J.-Y.
Koo
, “
A low-noise and wide-band ac boosting current-to-voltage amplifier for scanning tunneling microscopy
,”
Rev. Sci. Instrum.
76
,
023703
023704
(
2005
).
31.
J. P.
Fried
,
Y.
Wu
,
R. D.
Tilley
, and
J. J.
Gooding
, “
Optical nanopore sensors for quantitative analysis
,”
Nano Lett.
22
,
869
880
(
2022
).
You do not currently have access to this content.