A half-wave plate (HWP) is often used as a modulator to suppress systematic error in the measurements of cosmic microwave background (CMB) polarization. A HWP can also be used to measure circular polarization (CP) through its optical leakage from CP to linear polarization. The CP of the CMB is predicted from various sources, such as interactions in the Universe and extension of the standard model. Interaction with supernova remnants of population III stars is one of the brightest CP sources. Thus, the observation of the CP of CMB is a new tool for searching for population III stars. In this paper, we demonstrate the improved measurement of the leakage coefficient using the transmission measurement of an actual HWP in the laboratory. We measured the transmittance of linearly polarized light through the HWP used in Polarbear in the frequency range of 120–160 GHz. We evaluate the properties of the HWP by fitting the data with a physical model using the Markov Chain Monte Carlo method. We then estimate the band-averaged CP leakage coefficient using the physical model. We find that the leakage coefficient strongly depends on the spectra of CP sources. We thus calculate the maximum fractional leakage coefficient from CP to linear polarization as 0.133 ± 0.009 in the Rayleigh–Jeans spectrum. The nonzero value shows that Polarbear has a sensitivity to CP. Additionally, because we use the bandpass of detectors installed in the telescope to calculate the band-averaged values, we also consider systematic effects in the experiment.

1.
A.
Cooray
,
A.
Melchiorri
, and
J.
Silk
, “
Is the cosmic microwave background circularly polarized?
,”
Phys. Lett. B
554
,
1
6
(
2003
).
2.
S.
De
and
H.
Tashiro
, “
Circular polarization of the CMB: A probe of the first stars
,”
Phys. Rev. D
92
,
123506
(
2015
).
3.
R.
Mohammadi
, “
Evidence for cosmic neutrino background from CMB circular polarization
,”
Eur. Phys. J. C
74
,
3102
(
2014
).
4.
A.
Hoseinpour
,
M.
Zarei
,
G.
Orlando
,
N.
Bartolo
, and
S.
Matarrese
, “
CMB V modes from photon-photon forward scattering revisited
,”
Phys. Rev. D
102
,
063501
(
2020
).
5.
F.
Finelli
and
M.
Galaverni
, “
Rotation of linear polarization plane and circular polarization from cosmological pseudoscalar fields
,”
Phys. Rev. D
79
,
063002
(
2009
).
6.
K.
Harrington
,
J.
Eimer
,
D. T.
Chuss
,
M.
Petroff
,
J.
Cleary
,
M.
DeGeorge
,
T. W.
Grunberg
,
A.
Ali
,
J. W.
Appel
,
C. L.
Bennett
et al, “
Variable-delay polarization modulators for the class telescopes
,”
Proc. SPIE
10708
,
107082M
(
2018
).
7.
I. L.
Padilla
,
J. R.
Eimer
,
Y.
Li
,
G. E.
Addison
,
A.
Ali
,
J. W.
Appel
,
C. L.
Bennett
,
R.
Bustos
,
M. K.
Brewer
,
M.
Chan
et al, “
Two-year cosmology large angular scale surveyor (CLASS) observations: A measurement of circular polarization at 40 GHz
,”
Astrophys. J.
889
,
105
(
2020
).
8.
J. M.
Nagy
,
P. A. R.
Ade
,
M.
Amiri
,
S. J.
Benton
,
A. S.
Bergman
,
R.
Bihary
,
J. J.
Bock
,
J. R.
Bond
,
S. A.
Bryan
,
H. C.
Chiang
et al, “
A new limit on CMB circular polarization from spider
,”
Astrophys. J.
844
,
151
(
2017
).
9.
B.
Johnson
,
M.
Abroe
,
P.
Ade
,
J.
Bock
,
J.
Borrill
,
J.
Collins
,
S.
Hanany
,
A.
Jaffe
,
T.
Jones
,
A.
Lee
et al, “
Half-wave plate polarimetry with MAXIPOL
,” in
41st Rencontres de Moriond on Cosmology: Contents and Structures of the Universe 2006
,
2006
.
10.
C. A.
Hill
,
S.
Beckman
,
Y.
Chinone
,
N.
Goeckner-Wald
,
M.
Hazumi
,
B.
Keating
,
A.
Kusaka
,
A. T.
Lee
,
F.
Matsuda
,
R.
Plambeck
et al, “
Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment
,”
Proc. SPIE
9914
,
699
716
(
2016
).
11.
A.
Kusaka
,
J.
Appel
,
T.
Essinger-Hileman
,
J. A.
Beall
,
L. E.
Campusano
,
H.-M.
Cho
,
S. K.
Choi
,
K.
Crowley
,
J. W.
Fowler
,
P.
Gallardo
et al, “
Results from the atacama B-mode search (ABS) experiment
,”
J. Cosmol. Astropart. Phys.
2018
,
005
.
12.
S. A.
Bryan
,
P. A.
Ade
,
M.
Amiri
,
S.
Benton
,
R.
Bihary
,
J. J.
Bock
,
J. R.
Bond
,
J. A.
Bonetti
,
H. C.
Chiang
,
C. R.
Contaldi
et al, “
Modeling and characterization of the spider half-wave plate
,”
Proc. SPIE
7741
,
679
686
(
2010
).
13.
H.
Imada
,
T.
Matsumura
,
R.
Takaku
,
G.
Patanchon
,
H.
Ishino
,
Y.
Sakurai
,
K.
Komatsu
, and
N.
Katayama
, “
Instrumentally induced spurious polarization of a multi-layer half wave plate for a CMB polarization observation
,” in
Proceedings of the 29th Int. Symp. Space Terahertz Technol
,
2018
.
14.
S.
Adachi
,
T.
Adkins
,
M. A. O.
Aguilar Faúndez
,
K. S.
Arnold
,
C.
Baccigalupi
,
D.
Barron
,
S.
Chapman
,
K.
Cheung
,
Y.
Chinone
,
K. T.
Crowley
et al, “
Improved upper limit on degree-scale CMB B-mode polarization power from the 670 square-degree POLARBEAR survey
,”
Astrophys. J.
931
,
101
(
2022
).
15.
V. V.
Parshin
, “
Dielectric materials for gyrotron output windows
,”
Int. J. Infrared Millimeter Waves
15
,
339
348
(
1994
).
16.
RT/duroid®6002, ROGERS CORPORATION,
2020
.
17.
J. W.
Lamb
, “
Miscellaneous data on materials for millimetre and submillimetre optics
,”
Int. J. Infrared Millimeter Waves
17
,
1997
2034
(
1996
).
18.
T.
Essinger-Hileman
, “
Transfer matrix for treating stratified media including birefringent crystals
,”
Appl. Opt.
52
,
212
218
(
2013
).
19.
S.
Adachi
,
M. A.
Faúndez
,
K.
Arnold
,
C.
Baccigalupi
,
D.
Barron
,
D.
Beck
,
S.
Beckman
,
F.
Bianchini
,
D.
Boettger
,
J.
Borrill
et al, “
A measurement of the degree-scale CMB B-mode angular power spectrum with Polarbear
,”
The Astrophys. J.
897
,
55
(
2020
).
20.
S.
Takakura
,
M.
Aguilar
,
Y.
Akiba
,
K.
Arnold
,
C.
Baccigalupi
,
D.
Barron
,
S.
Beckman
,
D.
Boettger
,
J.
Borrill
,
S.
Chapman
et al, “
Performance of a continuously rotating half-wave plate on the POLARBEAR telescope
,”
J. Cosmol. Astropart. Phys.
2017
,
008
.
21.
F.
Matsuda
,
L.
Lowry
,
A.
Suzuki
,
M.
Aguilar Fáundez
,
K.
Arnold
,
D.
Barron
,
F.
Bianchini
,
K.
Cheung
,
Y.
Chinone
,
T.
Elleflot
et al, “
The POLARBEAR Fourier transform spectrometer calibrator and spectroscopic characterization of the POLARBEAR instrument
,”
Rev. Sci. Instrum.
90
,
115115
(
2019
).
22.
S.
King
and
P.
Lubin
, “
Circular polarization of the CMB: Foregrounds and detection prospects
,”
Phys. Rev. D
94
,
023501
(
2016
).
23.
J. C.
Mather
,
D. J.
Fixsen
,
R. A.
Shafer
,
C.
Mosier
, and
D. T.
Wilkinson
, “
Calibrator design for the COBE* far infrared absolute spectrophotometer (FIRAS)
,”
Astrophys. J.
512
,
511
(
1999
).
24.
S.
Hanany
and
P.
Rosenkranz
, “
Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments
,”
New Astron. Rev.
47
,
1159
1165
(
2003
).
25.
M. A.
Petroff
,
J. R.
Eimer
,
K.
Harrington
,
A.
Ali
,
J. W.
Appel
,
C. L.
Bennett
,
M. K.
Brewer
,
R.
Bustos
,
M.
Chan
,
D. T.
Chuss
et al, “
Two-year cosmology large angular scale surveyor (CLASS) observations: A first detection of atmospheric circular polarization at Q band
,”
Astrophys. J.
889
,
120
(
2020
).
You do not currently have access to this content.