Absolute x-ray ultraviolet diagnostics ensures 2D coverage of the radiation emission region that enables tomographic reconstruction. However, retrieving the local emissivity via tomography remains a challenge due to its ill-posed nature. Tikhonov regularization with smoothness operation generally performs well but tends to over-smooth regions with steep gradients and local structure in the radiation profile and may introduce artifacts. In this paper, a tomography method based on compressive sensing theory with Tikhonov regularization terms is developed. Experimental results on multiple phantom sets show that the proposed method improves the reconstruction accuracy and quality in regions with steep gradients compared with the Tikhonov regularization method and suppresses the unphysical negative emissivity. The analysis of reconstruction uncertainty shows that the dictionary learning process provides more accurate prior information about steep gradients to improve the quality of reconstructed images, and compressive sensing has the denoising capability to reduce the impact of noise. Finally, the method is validated by data from the Sino-UNIted Spherical Tokamak, showing fewer artifacts and more reliable reconstruction images than the earlier method.

1.
L. C.
Ingesson
,
B.
Alper
,
B. J.
Peterson
, and
J.-C.
Vallet
, “
Chapter 7: Tomography diagnostics: Bolometry and soft-x-ray detection
,”
Fusion Sci. Technol.
53
(
2
),
528
576
(
2008
).
2.
K. M.
Hanson
and
G. W.
Wecksung
, “
Local basis-function approach to computed tomography
,”
Appl. Opt.
24
(
23
),
4028
4039
(
1985
).
3.
R. S.
Granetz
and
P.
Smeulders
, “
X-ray tomography on JET
,”
Nucl. Fusion
28
(
3
),
457
(
1988
).
4.
N.
Iwama
,
H.
Yoshida
,
H.
Takimoto
,
Y.
Shen
,
S.
Takamura
, and
T.
Tsukishima
, “
Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation
,”
Appl. Phys. Lett.
54
(
6
),
502
504
(
1989
).
5.
M.
Anton
,
H.
Weisen
,
M. J.
Dutch
,
W. v. d.
Linden
,
F.
Buhlmann
,
R.
Chavan
,
B.
Marletaz
,
P.
Marmillod
, and
P.
Paris
, “
X-ray tomography on the TCV tokamak
,”
Plasma Phys. Controlled Fusion
38
(
11
),
1849
(
1996
).
6.
L. C.
Ingesson
,
B.
Alper
,
H.
Chen
,
A. W.
Edwards
,
G. C.
Fehmers
,
J. C.
Fuchs
, and
R.
Giannella
,
R. D.
Gill
,
L.
Lauro-Taroni
, and
M.
Romanelli
, “
Soft X ray tomography during ELMs and impurity injection in JET
,”
Nucl. Fusion
38
(
11
),
1675
(
1998
).
7.
E. J.
Candès
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate information
,”
Commun. Pure Appl. Math.
59
(
8
),
1207
1233
(
2006
).
8.
E. J.
Candès
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
(
2
),
489
509
(
2006
).
9.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
(
4
),
1289
1306
(
2006
).
10.
H.
Ye-xi
, “
A research program of spherical tokamak in China
,”
Plasma Sci. Technol.
4
(
4
),
1355
(
2002
).
11.
A.
Ramm
and
A.
Katsevich
,
The Radon Transform and Local Tomography
(
CRC Press
,
Boca Raton, FL
,
1996
).
12.
M.
Yang
,
B.
Wang
,
Y.
Tan
, and
Z.
Gao
, “
Modular bolometric/soft x-ray diagnostic in Sino-UNIted Spherical Tokamak
,”
Rev. Sci. Instrum.
92
(
4
),
043540
(
2021
).
13.
J.
Mlynar
,
T.
Craciunescu
,
D. R.
Ferreira
,
P.
Carvalho
,
O.
Ficker
,
O.
Grover
,
M.
Imrisek
, and
J.
Svoboda
, “
Current research into applications of tomography for fusion diagnostics
,”
J. Fusion Energy
38
(
3–4
),
458
466
(
2018
).
14.
M.
Hyder
and
K.
Mahata
, “
An approximate L0 norm minimization algorithm for compressed sensing
,” in
2009 IEEE International Conference on Acoustics, Speech and Signal Processing
(
IEEE
,
2009
), pp.
3365
3368
.
15.
A. N.
Tikhonov
and
V. Y.
Arsenin
,
Solutions of Ill-Posed Problems
(
Wiley
,
1977
), pp.
1
30
.
16.
P. C.
Hansen
, “
REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems
,”
Numer. Algorithms
6
(
1
),
1
35
(
1994
).
17.
A.
Wingen
,
M. W.
Shafer
,
E. A.
Unterberg
,
J. C.
Hill
, and
D. L.
Hillis
, “
Regularization of soft-X-ray imaging in the DIII-D tokamak
,”
J. Comput. Phys.
289
,
83
95
(
2015
).
18.
C. C.
Paige
and
M. A.
Saunders
, “
Towards a generalized singular value decomposition
,”
SIAM J. Numer. Anal.
18
(
3
),
398
405
(
1981
).
19.
G. H.
Golub
and
U.
Von Matt
, “
Tikhonov regularization for large scale problems
,”
Scientific Computing and Computational Mathematics Program
(
Computer Science Department, Stanford University
,
1997
), pp.
3
26
.
20.
T.
Odstrcil
,
T.
Putterich
,
M.
Odstrcil
,
A.
Gude
,
V.
Igochine
,
U.
Stroth
, and
A. U.
Team
, “
Optimized tomography methods for plasma emissivity reconstruction at the ASDEX Upgrade tokamak
,”
Rev. Sci. Instrum.
87
(
12
),
123505
(
2016
).
21.
P. C.
Hansen
and
D. P.
O’Leary
, “
The use of the L-curve in the regularization of discrete ill-posed problems
,”
SIAM J. Sci. Comput.
14
(
6
),
1487
1503
(
1993
).
22.
C. E.
Shannon
, “
Communication in the presence of noise
,”
Proc. IRE
37
(
1
),
10
21
(
1949
).
23.
E. J.
Candes
, “
The restricted isometry property and its implications for compressed sensing
,”
C. R. Math.
346
(
9–10
),
589
592
(
2008
).
24.
R.
Baraniuk
,
M.
Davenport
,
R.
DeVore
, and
M.
Wakin
, “
A simple proof of the restricted isometry property for random matrices
,”
Constr. Approximation
28
(
3
),
253
263
(
2008
).
25.
M.
Aharon
,
M.
Elad
, and
A.
Bruckstein
, “
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
,”
IEEE Trans. Signal Process.
54
(
11
),
4311
4322
(
2006
).
26.
Z.
Cheng
,
Y.
Tan
,
Z.
Gao
,
S.
Wang
,
B.
Wang
, and
W.
Liu
, “
Development of a thin high-frequency and high-precision magnetic probe array in Sino-United Spherical Tokamak
,”
Rev. Sci. Instrum.
92
(
5
),
053518
(
2021
).
27.
S.
Chen
,
S. A.
Billings
, and
W.
Luo
, “
Orthogonal least squares methods and their application to non-linear system identification
,”
Int. J. Control
50
(
5
),
1873
1896
(
1989
).
28.
G. M.
Davis
,
S. G.
Mallat
, and
Z.
Zhang
, “
Adaptive time-frequency decompositions
,”
Opt. Eng.
33
(
7
),
2183
2191
(
1994
).
29.
Y. C.
Pati
,
R.
Rezaiifar
, and
P. S.
Krishnaprasad
, “
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
,” in
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
(
IEEE
,
1993
), pp.
40
44
30.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
(
1
),
129
159
(
2001
).
31.
S. J.
Wright
,
R. D.
Nowak
, and
M. A. T.
Figueiredo
, “
Sparse reconstruction by separable approximation
,”
IEEE Trans. Signal Process.
57
(
7
),
2479
2493
(
2009
).
32.
A.
Beck
and
M.
Teboulle
, “
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
,”
SIAM J. Imaging Sci.
2
(
1
),
183
202
(
2009
).
33.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
(
4
),
600
612
(
2004
).
34.
Z.
Wang
,
E. P.
Simoncelli
, and
A. C.
Bovik
, “
Multiscale structural similarity for image quality assessment
,” in
The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003
(
IEEE
,
2003
), Vol.
2
, pp.
1398
1402
.
35.
G.
Demeter
, “
Tomography using neural networks
,”
Rev. Sci. Instrum.
68
(
3
),
1438
1443
(
1997
).
36.
E.
Ronchi
,
S.
Conroy
,
E.
Andersson Sundén
,
G.
Ericsson
,
M.
Gatu Johnson
,
C.
Hellesen
,
H.
Sjöstrand
, and
M.
Weiszflog
, “
Neural networks based neutron emissivity tomography at JET with real-time capabilities
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
613
(
2
),
295
303
(
2010
).
37.
F. A.
Matos
,
D. R.
Ferreira
,
P. J.
Carvalho
, and
J. E. T.
Contributors
, “
Deep learning for plasma tomography using the bolometer system at JET
,”
Fusion Eng. Des.
114
,
18
25
(
2017
).
38.
D. R.
Ferreira
,
P. J.
Carvalho
,
H.
Fernandes
, and
J. E. T.
Contributors
, “
Full-pulse tomographic reconstruction with deep neural networks
,”
Fusion Sci. Technol.
74
(
1–2
),
47
56
(
2018
).
You do not currently have access to this content.