We present the comparison of a field-programmable-gate-array (FPGA) based digital servo module with an analog counterpart for the purpose of laser frequency stabilization to a high-finesse optical cavity. The transfer functions of both the digital and analog modules for proportional–integral–derivative control are measured. For the lasers stabilized to the cavity, we measure the singe-sideband power spectral density of fast phase noise by means of an optical beat with filtered light transmitted through the cavity. The comparison between the digital and analog modules is performed for two low-phase-noise diode lasers at 1120 and 665 nm wavelengths. The performance of the digital servo module compares well to the analog one for the lowest attained levels of 30 mrad for the integrated phase noise and 10−3 for the relative noise power. The laser linewidth is determined to be in the sub-kHz regime, only limited by the high-finesse cavity. Our work exploits the versatility of the FPGA-based servo module (STEMlab) when used with open-source software and hardware modifications. We demonstrated that such modules are suitable candidates for remote-controlled low-phase-noise applications in the fields of laser spectroscopy and atomic, molecular, and optical physics.

1.
N.
Kolachevsky
,
J.
Alnis
,
C. G.
Parthey
,
A.
Matveev
,
R.
Landig
, and
T. W.
Hänsch
, “
Low phase noise diode laser oscillator for 1s–2s spectroscopy in atomic hydrogen
,”
Opt. Lett.
36
,
4299
4301
(
2011
).
2.
A.
Beyer
,
L.
Maisenbacher
,
A.
Matveev
,
R.
Pohl
,
K.
Khabarova
,
A.
Grinin
,
T.
Lamour
,
D. C.
Yost
,
T. W.
Hänsch
,
N.
Kolachevsky
, and
T.
Udem
, “
The Rydberg constant and proton size from atomic hydrogen
,”
Science
358
,
79
85
(
2017
).
3.
L. P.
Yatsenko
,
B. W.
Shore
, and
K.
Bergmann
, “
Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage
,”
Phys. Rev. A
89
,
013831
(
2014
).
4.
P.
Kwee
,
C.
Bogan
,
K.
Danzmann
,
M.
Frede
,
H.
Kim
,
P.
King
,
J.
Pöld
,
O.
Puncken
,
R. L.
Savage
,
F.
Seifert
et al, “
Stabilized high-power laser system for the gravitational wave detector advanced LIGO
,”
Opt. Express
20
,
10617
10634
(
2012
).
5.
N.
Huntemann
,
C.
Sanner
,
B.
Lipphardt
,
C.
Tamm
, and
E.
Peik
, “
Single-ion atomic clock with 3 × 10−18 systematic uncertainty
,”
Phys. Rev. Lett.
116
,
063001
(
2016
).
6.
B. J.
Bloom
,
T. L.
Nicholson
,
J. R.
Williams
,
S. L.
Campbell
,
M.
Bishof
,
X.
Zhang
,
W.
Zhang
,
S. L.
Bromley
, and
J.
Ye
, “
An optical lattice clock with accuracy and stability at the 10−18 level
,”
Nature
506
,
71
75
(
2014
).
7.
H.
Levine
,
A.
Keesling
,
A.
Omran
,
H.
Bernien
,
S.
Schwartz
,
A. S.
Zibrov
,
M.
Endres
,
M.
Greiner
,
V.
Vuletić
, and
M. D.
Lukin
, “
High-fidelity control and entanglement of Rydberg-atom qubits
,”
Phys. Rev. Lett.
121
,
123603
(
2018
).
8.
M.
Carminati
and
G.
Scandurra
, “
Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation
,”
Rev. Sci. Instrum.
92
,
091501
(
2021
).
9.
S. J.
Yu
,
E.
Fajeau
,
L. Q.
Liu
,
D. J.
Jones
, and
K. W.
Madison
, “
The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments
,”
Rev. Sci. Instrum.
89
,
025107
(
2018
).
10.
X.-L.
Wang
,
T.-J.
Tao
,
B.
Cheng
,
B.
Wu
,
Y.-F.
Xu
,
Z.-Y.
Wang
, and
Q.
Lin
, “
A digital phase lock loop for an external cavity diode laser
,”
Chin. Phys. Lett.
28
,
084214
(
2011
).
11.
R. P. Instrumentation Technologies, LLC,
https://www.redpitaya.com,
2011
.
12.
M. A.
Luda
,
M.
Drechsler
,
C. T.
Schmiegelow
, and
J.
Codnia
, “
Compact embedded device for lock-in measurements and experiment active control
,”
Rev. Sci. Instrum.
90
,
023106
(
2019
).
13.
B.
Wiegand
,
B.
Leykauf
,
R.
Jördens
, and
M.
Krutzik
, “
Linien: A versatile, user-friendly, open-source FPGA-based tool for frequency stabilization and spectroscopy parameter optimization
,”
Rev. Sci. Instrum.
93
,
063001
(
2022
).
14.
G. A.
Stimpson
,
M. S.
Skilbeck
,
R. L.
Patel
,
B. L.
Green
, and
G. W.
Morley
, “
An open-source high-frequency lock-in amplifier
,”
Rev. Sci. Instrum.
90
,
094701
(
2019
).
15.
S.
Reisenbauer
,
P.
Behal
,
G.
Wachter
, and
M.
Trupke
, “
LithPulser: An open-source pulse generator with 1 ns time resolution based on the Red Pitaya STEMlab 125-10 featuring real-time conditional logic for experimental control
,”
Rev. Sci. Instrum.
93
,
014708
(
2022
).
16.
L.
Neuhaus
,
R.
Metzdorff
,
S.
Chua
,
T.
Jacqmin
,
T.
Briant
,
A.
Heidmann
,
P.-F.
Cohadon
, and
S.
Deléglise
, “
PyRPL (Python Red Pitaya Lockbox)—An open-source software package for FPGA-controlled quantum optics experiments
,” in
2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
(
IEEE
,
2017
), p.
1
.
17.
G.
Di Domenico
,
S.
Schilt
, and
P.
Thomann
, “
Simple approach to the relation between laser frequency noise and laser line shape
,”
Appl. Opt.
49
,
4801
4807
(
2010
).
18.
F.
Schmid
,
J.
Weitenberg
,
T. W.
Hänsch
,
T.
Udem
, and
A.
Ozawa
, “
Simple phase noise measurement scheme for cavity-stabilized laser systems
,”
Opt. Lett.
44
,
2709
2712
(
2019
).
19.
J.
Hald
and
V.
Ruseva
, “
Efficient suppression of diode-laser phase noise by optical filtering
,”
J. Opt. Soc. Am. B
22
,
2338
2344
(
2005
).
20.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
,
J.
Hough
,
G. M.
Ford
,
A. J.
Munley
, and
H.
Ward
, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B
31
,
97
105
(
1983
).
21.
G.
Berden
,
R.
Peeters
, and
G.
Meijer
, “
Cavity ring-down spectroscopy: Experimental schemes and applications
,”
Int. Rev. Phys. Chem.
19
,
565
607
(
2000
).
22.
A.
Yang
, “
Singlet pathway to the dipolar ground state of ultracold 6Li40K molecules
,” Ph.D. thesis,
Centre for Quantum Technologies
,
2021
.
24.
T.
Preuschoff
,
M.
Schlosser
, and
G.
Birkl
, “
Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red Pitaya)
,”
Rev. Sci. Instrum.
91
,
083001
(
2020
).
25.
J.
Alnis
,
A.
Matveev
,
N.
Kolachevsky
,
T.
Udem
, and
T. W.
Hänsch
, “
Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities
,”
Phys. Rev. A
77
,
053809
(
2008
).
26.
F. E.
William
,
Practical RF System Design
(
Wiley
,
2003
), Chap. 9, p.
246
.
27.
H. R.
Telle
,
Frequency Control of Semiconductor Lasers
(
Wiley-Interscience
,
1996
), Chap. 5, pp.
138
167
.
28.
U.
Tietze
,
C.
Schenk
, and
E.
Gamm
,
Electronic Circuits: Handbook for Design and Application
(
Springer Berlin Heidelberg
,
2007
), Chap. 22, pp.
1104
1109
.
29.
G.
Cappellini
,
P.
Lombardi
,
M.
Mancini
,
G.
Pagano
,
M.
Pizzocaro
,
L.
Fallani
, and
J.
Catani
, “
A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition
,”
Rev. Sci. Instrum.
86
,
073111
(
2015
).
30.
Y.
Takata
,
S.
Nakajima
,
J.
Kobayashi
,
K.
Ono
,
Y.
Amano
, and
Y.
Takahashi
, “
Current-feedback-stabilized laser system for quantum simulation experiments using Yb clock transition at 578 nm
,”
Rev. Sci. Instrum.
90
,
083002
(
2019
).
You do not currently have access to this content.