With the development of microfluidic technology, new materials and fabrication methods have been constantly invented in the field of microfluidics. Bonding is one of the key steps for the fabrication of enclosed-channel microfluidic chips, which have been extensively explored by researchers globally. The main purpose of bonding is to seal/enclose fabricated microchannels for subsequent fluid manipulations. Conventional bonding methods are usually irreversible, and the forced detachment of the substrate and cover plate may lead to structural damage to the chip. Some of the current microfluidic applications require reversible bonding to reuse the chip or retrieve the contents inside the chip. Therefore, it is essential to develop reversible bonding methods to meet the requirements of various applications. This review introduces the most recent developments in reversible bonding methods in microfluidics and their corresponding applications. Finally, the perspective and outlook of reversible bonding technology were discussed in this review.

1.
R.
Sivakumar
and
N. Y.
Lee
, “
Microfluidic device fabrication mediated by surface chemical bonding
,”
Analyst
145
,
4096
(
2020
).
2.
M.
Kim
,
B.-U.
Moon
, and
C. H.
Hidrovo
, “
Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices
,”
J. Micromech. Microeng.
23
,
095024
(
2013
).
3.
N. R.
Harris
,
M.
Hill
,
S.
Beeby
,
Y.
Shen
,
N. M.
White
,
J. J.
Hawkes
, and
W. T.
Coakley
, “
A silicon microfluidic ultrasonic separator
,”
Sens. Actuators B
95
,
425
(
2003
).
4.
B.-Y.
Qu
,
Z.-Y.
Wu
,
F.
Fang
,
Z.-M.
Bai
,
D.-Z.
Yang
, and
S.-K.
Xu
, “
A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling
,”
Anal. Bioanal. Chem.
392
,
1317
(
2008
).
5.
H.
Becker
and
C.
Gärtner
, “
Polymer microfabrication technologies for microfluidic systems
,”
Anal. Bioanal. Chem.
390
,
89
(
2008
).
6.
M. E.
Wilson
,
N.
Kota
,
Y.
Kim
,
Y.
Wang
,
D. B.
Stolz
,
P. R.
LeDuc
, and
O. B.
Ozdoganlar
, “
Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
,”
Lab Chip
11
,
1550
(
2011
).
7.
Y.
Fan
,
K.
Gao
,
J.
Chen
,
W.
Li
, and
Y.
Zhang
, “
Low-cost PMMA-based microfluidics for the visualization of enhanced oil recovery
,”
Oil Gas Sci. Technol.
73
,
26
(
2018
).
8.
X.
Ma
,
R.
Li
,
Z.
Jin
,
Y.
Fan
,
X.
Zhou
, and
Y.
Zhang
, “
Injection molding and characterization of PMMA-based microfluidic devices
,”
Microsyst. Technol.
26
,
1317
(
2019
).
9.
T.-Y.
Lin
,
T.
Do
,
P.
Kwon
, and
P. B.
Lillehoj
, “
3D printed metal molds for hot embossing plastic microfluidic devices
,”
Lab Chip
17
,
241
(
2017
).
10.
A. K.
Au
,
W.
Huynh
,
L. F.
Horowitz
, and
A.
Folch
, “
3D‐printed microfluidics
,”
Angew. Chem., Int. Ed.
55
,
3862
(
2016
).
11.
Y.
Yao
and
Y.
Fan
, “
CO2 laser fabrication of hydrogel-based open-channel microfluidic devices
,”
Biomed. Microdevices
23
,
47
(
2021
).
12.
M. M.
Faghih
and
M. K.
Sharp
, “
Solvent-based bonding of PMMA–PMMA for microfluidic applications
,”
Microsyst. Technol.
25
,
3547
(
2018
).
13.
D.
Bodas
and
C.
Khan-Malek
, “
Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation
,”
Sens. Actuators B
123
,
368
(
2007
).
14.
B. G.
Chung
,
J. W.
Park
,
J. S.
Hu
,
C.
Huang
,
E. S.
Monuki
, and
N. L.
Jeon
, “
A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods
,”
BMC Biotechnol.
7
,
60
(
2007
).
15.
Y.
Yao
,
L.
Li
,
J.
Jiang
,
Y.
Zhang
,
G.
Chen
, and
Y.
Fan
, “
Reversible bonding for microfluidic devices with UV release tape
,”
Microfluid. Nanofluid.
26
,
23
(
2022
).
16.
T. H. N.
Dinh
,
H. H.
Cao
,
F. S.
Hamdi
,
M.
Couty
,
E.
Martincic
,
M.
Woytasik
, and
E.
Dufour-Gergam
, “
Development of reversible bonding for microfluidic applications
,”
Microfluid. Nanofluid.
19
,
751
(
2015
).
17.
B.-U.
Moon
,
K.
Morton
,
K.
Li
,
C.
Miville-Godin
, and
T.
Veres
, “
Reversible bonding of thermoplastic elastomers for cell patterning applications
,”
Processes
9
,
54
(
2020
).
18.
M.
Rasponi
,
F.
Piraino
,
N.
Sadr
,
M.
Laganà
,
A.
Redaelli
, and
M.
Moretti
, “
Reliable magnetic reversible assembly of complex microfluidic devices: Fabrication, characterization, and biological validation
,”
Microfluid. Nanofluid.
10
,
1097
(
2010
).
19.
S. C.
Chong
,
L.
Xie
,
L.
Yobas
,
H. M.
Ji
,
J.
Li
,
Y.
Chen
,
P.
Damaruganath
,
W. C.
Hui
, and
M. K.
Iyer
, “
Disposable polydimethylsiloxane package for bio-microfluidic system
,” in
Proceedings of the Electronic Components and Technology
,
2005
.
20.
J. H.
Wittig
, Jr.
,
A. F.
Ryan
, and
P. M.
Asbeck
, “
A reusable microfluidic plate with alternate-choice architecture for assessing growth preference in tissue culture
,”
J. Neurosci. Methods
144
,
79
(
2005
).
21.
C.
Pérez-Sosa
,
A. B.
Peñaherrera-Pazmiño
,
G.
Rosero
,
N.
Bourguignon
,
A.
Aravelli
,
S.
Bhansali
,
M. S.
Pérez
, and
B.
Lerner
, “
Novel reproducible manufacturing and reversible sealing method for microfluidic devices
,”
Micromachines
13
,
650
(
2022
).
22.
Q.
Chen
,
G.
Li
,
Y.
Nie
,
S.
Yao
, and
J.
Zhao
, “
Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration
,”
Microfluid. Nanofluid.
16
,
83
(
2013
).
23.
U. Y.
Schaff
,
M. M. Q.
Xing
,
K. K.
Lin
,
N.
Pan
,
N. L.
Jeon
, and
S. I.
Simon
, “
Vascular mimetics based on microfluidics for imaging the leukocyte–endothelial inflammatory response
,”
Lab Chip
7
,
448
(
2007
).
24.
M.
Le Berre
,
C.
Crozatier
,
G.
Velve Casquillas
, and
Y.
Chen
, “
Reversible assembling of microfluidic devices by aspiration
,”
Microelectron. Eng.
83
,
1284
(
2006
).
25.
G.
Pitingolo
,
P.
Nizard
,
A.
Riaud
, and
V.
Taly
, “
Beyond the on/off chip trade-off: A reversibly sealed microfluidic platform for 3D tumor microtissue analysis
,”
Sens. Actuators B
274
,
393
(
2018
).
26.
M.
Rafat
,
D. R.
Raad
,
A. C.
Rowat
, and
D. T.
Auguste
, “
Fabrication of reversibly adhesive fluidic devices using magnetism
,”
Lab Chip
9
,
3016
(
2009
).
27.
J.
Merrin
, “
Frontiers in microfluidics, a teaching resource review
,”
Bioengineering
6
,
109
(
2019
).
28.
A.
Wasay
and
D.
Sameoto
, “
Geckofluidics: A new concept in reversible bonding of microfluidic channels
,” in
Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop (Transducer Research Foundation
,
2014
), pp.
443
444
,
available at
https://transducer-research-foundation.org/technical_digests/HiltonHead_2014/hh2014_0443.pdf.
29.
M.
Zandvakili
,
M. M.
Honari
,
S.
Dan
, and
P.
Mousavi
, “
Microfluidic liquid metal based mechanically reconfigurable antenna using reversible gecko adhesive based bonding
,” in
2016 IEEE MTT-S International Microwave Symposium (IMS)
(
IEEE
,
2016
).
30.
D.
Sameoto
and
A.
Wasay
, “
Materials selection and manufacturing of thermoplastic elastomer microfluidics
,”
Proc. SPIE
9320
,
932001
(
2015
).
31.
A.
Wasay
and
D.
Sameoto
, “
Gecko gaskets for self-sealing and high-strength reversible bonding of microfluidics
,”
Lab Chip
15
,
2749
(
2015
).
32.
D. W.
Inglis
, “
A method for reducing pressure-induced deformation in silicone microfluidics
,”
Biomicrofluidics
4
,
026504
(
2010
).
33.
D.
Patko
,
Z.
Mártonfalvi
,
B.
Kovacs
,
F.
Vonderviszt
,
M.
Kellermayer
, and
R.
Horvath
, “
Microfluidic channels laser-cut in thin double-sided tapes: Cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips
,”
Sens. Actuators B
196
,
352
(
2014
).
34.
R. W. R. L.
Gajasinghe
,
S. U.
Senveli
,
S.
Rawal
,
A.
Williams
,
A.
Zheng
,
R. H.
Datar
,
R. J.
Cote
, and
O.
Tigli
, “
Experimental study of PDMS bonding to various substrates for monolithic microfluidic applications
,”
J. Micromech. Microeng.
24
,
075010
(
2014
).
35.
H. H.
Cao
,
T. H. N.
Dinh
,
F. S.
Hamdi
,
M.
Couty
,
E.
Martincic
,
M.
Woytasik
, and
E.
Dufour‐Gergam
, “
Reversible bonding by dimethyl‐methylphenylmethoxy siloxane – based stamping technique for reusable poly(dimethylsiloxane) microfluidic chip
,”
Micro Nano Lett.
10
,
229
(
2015
).
36.
G.
Pitingolo
,
A.
Riaud
,
C.
Nastruzzi
, and
V.
Taly
, “
Tunable and reversible gelatin‐based bonding for microfluidic cell culture
,”
Adv. Eng. Mater.
21
,
1900145
(
2019
).
37.
L. S.
Shiroma
,
A. F.
Oliveira
,
E. O.
Lobo-Júnior
,
W. K. T.
Coltro
,
A. L.
Gobbi
,
L. G.
de La Torre
, and
R. S.
Lima
, “
High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips
,”
Anal. Chim. Acta
951
,
116
(
2017
).
38.
C.
Vézy
,
N.
Haddour
,
N. M.
Dempsey
,
F.
Dumas-Bouchiat
, and
M.
Frénéa-Robin
, “
Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates
,”
Micro Nano Lett.
6
,
871
(
2011
).
39.
K. T. L.
Trinh
,
N. X. T.
Le
, and
N. Y.
Lee
, “
Chitosan–polydopamine hydrogel complex: A novel green adhesion agent for reversibly bonding thermoplastic microdevice and its application for cell-friendly microfluidic 3D cell culture
,”
Lab Chip
20
,
3524
(
2020
).
40.
S.-i.
Funano
,
N.
Ota
, and
Y.
Tanaka
, “
A simple and reversible glass–glass bonding method to construct a microfluidic device and its application for cell recovery
,”
Lab Chip
21
,
2244
(
2021
).
41.
Y.
Li
,
X.
Wang
,
S.
Yang
,
J.
Liu
,
Q.
Zhang
, and
Y.
Fan
, “
Reversible bonding of thermoplastic-based microfluidics with freeze-release adhesive
,”
Microfluid. Nanofluid.
27
,
33
(
2023
).
42.
K.
Kreppenhofer
,
J.
Li
,
R.
Segura
,
L.
Popp
,
M.
Rossi
,
P.
Tzvetkova
,
B.
Luy
,
C. J.
Kähler
,
A. E.
Guber
, and
P. A.
Levkin
, “
Formation of a polymer surface with a gradient of pore size using a microfluidic chip
,”
Langmuir
29
,
3797
(
2013
).
43.
J. W.
Park
,
B.
Vahidi
,
A. M.
Taylor
,
S. W.
Rhee
, and
N. L.
Jeon
, “
Microfluidic culture platform for neuroscience research
,”
Nat. Protoc.
1
,
2128
(
2006
).
44.
C.
Tu
,
B.
Huang
,
J.
Zhou
,
Y.
Liang
,
J.
Tian
,
L.
Ji
,
X.
Liang
, and
X.
Ye
, “
A microfluidic chip for cell patterning utilizing paired microwells and protein patterns
,”
Micromachines
8
,
1
(
2016
).
45.
J. H.-S.
Kim
,
A.
Marafie
,
X.-Y.
Jia
,
J. V.
Zoval
, and
M. J.
Madou
, “
Characterization of DNA hybridization kinetics in a microfluidic flow channel
,”
Sens. Actuators B
113
,
281
(
2006
).
46.
D.
Erickson
,
X.
Liu
,
U.
Krull
, and
D.
Li
, “
Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis
,”
Anal. Chem.
76
,
7269
(
2004
).
47.
M.
Chu
,
T. T.
Nguyen
,
E. K.
Lee
,
J. L.
Morival
, and
M.
Khine
, “
Plasma free reversible and irreversible microfluidic bonding
,”
Lab Chip
17
,
267
(
2017
).
48.
M.
Geissler
,
E.
Roy
,
G. A.
Diaz-Quijada
,
J.-C.
Galas
, and
T.
Veres
, “
Microfluidic patterning of miniaturized DNA arrays on plastic substrates
,”
ACS Appl. Mater. Interfaces
1
,
1387
(
2009
).
49.
D.
Brassard
,
L.
Clime
,
K.
Li
,
M.
Geissler
,
C.
Miville-Godin
,
E.
Roy
, and
T.
Veres
, “
3D thermoplastic elastomer microfluidic devices for biological probe immobilization
,”
Lab Chip
11
,
4099
(
2011
).
50.
L. S.
Shiroma
,
M. H.
Piazzetta
,
G. F.
Duarte-Junior
,
W. K.
Coltro
,
E.
Carrilho
,
A. L.
Gobbi
, and
R. S.
Lima
, “
Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
,”
Sci. Rep.
6
,
26032
(
2016
).
51.
K.-Y.
Song
,
H.
Zhang
,
W.-J.
Zhang
, and
A.
Teixeira
, “
Enhancement of the surface free energy of PDMS for reversible and leakage-free bonding of PDMS–PS microfluidic cell-culture systems
,”
Microfluid. Nanofluid.
22
,
135
(
2018
).
52.
M. C.
Traub
,
W.
Longsine
, and
V. N.
Truskett
, “
Advances in nanoimprint lithography
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
583
(
2016
).
53.
F.
Marty
,
L.
Rousseau
,
B.
Saadany
,
B.
Mercier
,
O.
Français
,
Y.
Mita
, and
T.
Bourouina
, “
Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures
,”
Microelectron. J.
36
,
673
(
2005
).
54.
J.
Harris
,
H.
Lee
,
B.
Vahidi
,
C.
Tu
,
D.
Cribbs
,
C.
Cotman
, and
N. L.
Jeon
, “
Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices
,”
J. Visualized Exp.
2007
,
410
.
55.
E.
Biffi
,
A.
Menegon
,
F.
Piraino
,
A.
Pedrocchi
,
G. B.
Fiore
, and
M.
Rasponi
, “
Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates
,”
Biotechnol. Bioeng.
109
,
166
(
2012
).
56.
A.
Khademhosseini
,
J.
Yeh
,
G.
Eng
,
J.
Karp
,
H.
Kaji
,
J.
Borenstein
,
O. C.
Farokhzad
, and
R.
Langer
, “
Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays
,”
Lab Chip
5
,
1380
(
2005
).
57.
D.
Royet
,
Y.
Hériveaux
,
J.
Marchalot
,
R.
Scorretti
,
A.
Dias
,
N. M.
Dempsey
,
M.
Bonfim
,
P.
Simonet
, and
M.
Frénéa-Robin
, “
Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices
,”
J. Magn. Magn. Mater.
427
,
306
(
2017
).
58.
Y.
Li
,
J. D.
Motschman
,
S. T.
Kelly
, and
B. B.
Yellen
, “
Injection molded microfluidics for establishing high-density single cell arrays in an open hydrogel format
,”
Anal. Chem.
92
,
2794
(
2020
).
59.
J. A.
Benn
,
J.
Hu
,
B. J.
Hogan
,
R. C.
Fry
,
L. D.
Samson
, and
T.
Thorsen
, “
Comparative modeling and analysis of microfluidic and conventional DNA microarrays
,”
Anal. Biochem.
348
,
284
(
2006
).
60.
L.
Wang
and
P. C. H.
Li
, “
Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection
,”
J. Agric. Food Chem.
55
,
10509
(
2007
).
61.
H.
Chen
,
L.
Wang
, and
P. C. H.
Li
, “
Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk
,”
Lab Chip
8
,
826
(
2008
).
62.
G.
Jia
,
K.-S.
Ma
,
J.
Kim
,
J. V.
Zoval
,
R.
Peytavi
,
M. G.
Bergeron
, and
M. J.
Madou
, “
Dynamic automated DNA hybridization on a CD (compact disc) fluidic platform
,”
Sens. Actuators B
114
,
173
(
2006
).
63.
D.
Martins
,
X.
Wei
,
R.
Levicky
, and
Y.-A.
Song
, “
Integration of multiplexed microfluidic electrokinetic concentrators with a morpholino microarray via reversible surface bonding for enhanced DNA hybridization
,”
Anal. Chem.
88
,
3539
(
2016
).
64.
S.
Warnat
,
H.
King
,
A.
Wasay
,
D.
Sameoto
, and
T.
Hubbard
, “
Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics
,”
J. Micromech. Microeng.
26
,
097001
(
2016
).
You do not currently have access to this content.