Resistive voltage dividers (RVDs) are commonly used as AC attenuation networks in measurement circuits; however, their high-frequency gain is always disturbed by nasty parasitic elements and deviates significantly from the desired design value. This paper proposes a closed-loop adjustment technique for adjusting the frequency response flatness of wideband RVDs (WRVDs). In the proposed adjustment scheme, the frequency response flatness of the WRVD is determined by a voltage-controlled compensation capacitor, whereas the corresponding control voltage is provided by a digital potentiometer. The settling time and the adjustment error of the loop are analyzed to evaluate the adjustment performance. To verify the concept, the adjustment loop is incorporated into a 100:1 WRVD for demonstration. Final experiments show that the proposed technique improves gain flatness by 81 times compared with uncompensated flatness, with 1.15% up to 2 MHz, and that the compensated voltage divider has an excellent linearity of 36 ppm up to 100 V.

1.
M.
Dadić
,
P.
Mostarac
,
R.
Malarić
, and
J.
Konjevod
,
Electronics
10
(
6
),
696
(
2021
).
2.
S.
Xie
,
Z.
Mu
,
W.
Ding
,
Z.
Wan
,
S.
Su
,
C.
Zhang
,
Y.
Zhang
,
Y.
Xia
, and
D.
Luo
,
Energies
15
(
2
),
451
(
2022
).
3.
G.
Crotti
,
D.
Gallo
,
D.
Giordano
,
C.
Landi
,
M.
Luiso
,
M.
Modarres
, and
M.
Zucca
,
IEEE Sens. J.
17
(
23
),
7621
(
2017
).
4.
M.
Grubmüller
,
B.
Schweighofer
, and
H.
Wegleiter
,
Sensors
2014
,
1332
.
5.
J.-R.
Riba
,
F.
Capelli
, and
M.
Moreno-Eguilaz
,
Energies
12
(
12
),
2278
(
2019
).
6.
M.
Zucca
,
M.
Modarres
,
U.
Pogliano
, and
D.
Serazio
,
IEEE Trans. Instrum. Meas.
69
(
4
),
1753
(
2019
).
7.
A.
Heaton
,
Electron. Lett.
5
(
13
),
279
(
1969
).
8.
M.
Kaczmarek
and
T.
Szatilo
,
Measurement
68
,
22
(
2015
).
9.
J.
Winkelholz
,
M.
Hitzemann
,
A.
Nitschke
,
A.
Zygmanowski
, and
S.
Zimmermann
,
Electronics
11
(
21
),
3446
(
2022
).
10.
H.
Shi
,
Z.
Chen
,
J.
Wu
, and
X.
Li
,
Rev. Sci. Instrum.
90
(
10
),
104702
(
2019
).
11.
T.
Yamada
,
K.
Tachibana
, and
T.
Shioda
,
IEEE Trans. Instrum. Meas.
70
,
1500307
(
2020
).
12.
T.
Yamada
,
S.
Kon
, and
N.
Sakamoto
,
IEEE Trans. Instrum. Meas.
66
(
6
),
1524
(
2017
).
13.
Y.
Liu
,
F.
Lin
,
G.
Hu
, and
M.
Zhang
,
IEEE Trans. Instrum. Meas.
60
(
3
),
996
(
2010
).
14.
V.
Brzhezitsky
,
Y.
Haran
,
A.
Derzhuk
,
Y.
Trotsenko
, and
O.
Protsenko
, in
2020 7th IEEE International Conference on Energy Smart Systems (ESS)
(
IEEE
,
2020
).
15.
X.
Gou
,
K.
Chen
,
Z.
Wang
,
W.
Han
, and
Y.
Wang
, in
2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
(
IEEE
,
2020
).
16.
M.
Grubmüller
,
B.
Schweighofer
, and
H.
Wegleiter
,
IEEE Trans. Ind. Electron.
64
(
3
),
2335
(
2016
).
17.
B.
Karlsen
,
K.
Lind
,
H.
Malmbekk
, and
P.
Ohlckers
,
Int. J. Metrol. Qual. Eng.
10
,
8
(
2019
).
18.
J.
Klüss
,
J.
Hällström
, and
A.-P.
Elg
,
J. Electrostat.
73
,
140
(
2015
).
19.
See http://www.keysight.com/ for The 3458A multimeter calibration manual can be found at the following web address.
20.
F.
Galliana
,
R.
Cerri
, and
D.
Corona
,
Measurement
183
,
109865
(
2021
).
21.
L.
Souza
,
M.
Pinto
,
M. B.
Martins
, and
A.
Lima
,
IEEE Trans. Instrum. Meas.
70
,
1011208
(
2020
).
22.
G.
Giusi
,
F.
Crupi
,
C.
Pace
, and
P.
Magnone
,
IEEE Trans. Circuits Syst., I
56
(
1
),
97
(
2009
).
23.
L.
Deng
,
Q.
Sun
,
F.
Jiang
,
S.
Wang
,
S.
Jiang
,
H. X.
Xiao
, and
T.
Peng
,
IEEE Trans. Appl. Supercond.
28
(
3
),
1
(
2018
).
24.
S. V.
de Souza
and
R. G.
Junqueira
,
Anal. Chim. Acta
552
(
1-2
),
25
(
2005
).
You do not currently have access to this content.