We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion–photon couplings above 10−13 Ge V−1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7–4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

1.
C.
Bartram
,
T.
Braine
,
R.
Cervantes
,
N.
Crisosto
,
N.
Du
,
G.
Leum
,
L.
Rosenberg
,
G.
Rybka
,
J.
Yang
,
D.
Bowring
et al, “
Axion dark matter experiment: Run 1b analysis details
,”
Phys. Rev. D
103
,
032002
(
2021
).
2.
P. A. R.
Ade
et al, (
Planck), “Planck 2013 results. XVI. Cosmological parameters
,”
Astron. Astrophys.
571
,
A16
(
2014
).
3.
V. C.
Rubin
,
W. K.
Ford
, Jr.
, and
N.
Thonnard
, “
Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)
,”
Astrophys. J.
238
,
471
487
(
1980
).
4.
N.
Kaiser
and
G.
Squires
, “
Mapping the dark matter with weak gravitational lensing
,”
Astrophys. J.
404
,
441
450
(
1993
).
5.
A.
Robertson
,
R.
Massey
, and
V.
Eke
, “
What does the bullet cluster tell us about self-interacting dark matter?
,”
Monthly Notices of the Royal Astronomical Society
,
stw2670
(
2016
).
6.
J.
Preskill
,
M. B.
Wise
, and
F.
Wilczek
, “
Cosmology of the invisible axion
,”
Phys. Lett. B
120
,
127
132
(
1983
).
7.
L. F.
Abbott
and
P.
Sikivie
, “
A cosmological bound on the invisible axion
,”
Phys. Lett. B
120
,
133
136
(
1983
).
8.
M.
Dine
and
W.
Fischler
, “
The not-so-harmless axion
,”
Phys. Lett. B
120
,
137
141
(
1983
).
9.
R. D.
Peccei
and
H. R.
Quinn
, “
CP conservation in the presence of pseudoparticles
,”
Phys. Rev. Lett.
38
,
1440
1443
(
1977
).
10.
R. D.
Peccei
and
H. R.
Quinn
, “
Constraints imposed by CP conservation in the presence of pseudoparticles
,”
Phys. Rev. D
16
,
1791
1797
(
1977
).
11.
S.
Weinberg
, “
A new light boson?
Phys. Rev. Lett.
40
,
223
226
(
1978
).
12.
F.
Wilczek
, “
Problem of strong p and t invariance in the presence of instantons
,”
Phys. Rev. Lett.
40
,
279
282
(
1978
).
13.
P.
Sikivie
, “
Detection rates for ‘invisible’-axion searches
,”
Phys. Rev. D
32
,
2988
2991
(
1985
).
14.
P.
Sikivie
, “
Experimental tests of the invisible axion
,”
Phys. Rev. Lett.
51
,
1415
1417
(
1983
).
15.
M.
Dine
,
W.
Fischler
, and
M.
Srednicki
, “
A simple solution to the strong CP problem with a harmless axion
,”
Phys. Lett. B
104
,
199
(
1981
).
16.
A. P.
Zhitnitskii
, “
Possible suppression of axion-hadron interactions
,”
Sov. J. Nucl. Phys.
31
,
2
(
1980
) (English Translation).
17.
J. E.
Kim
, “
Weak interaction singlet and strong CP invariance
,”
Phys. Rev. Lett.
43
,
103
(
1979
).
18.
M. A.
Shifman
,
A. I.
Vainshtein
, and
V. I.
Zakharov
, “
Can confinement ensure natural CP invariance of strong interactions?
,”
Nucl. Phys. B
166
,
493
(
1980
).
19.
L.
Zhong
,
S.
Al Kenany
,
K. M.
Backes
,
B. M.
Brubaker
,
S. B.
Cahn
,
G.
Carosi
,
Y. V.
Gurevich
,
W. F.
Kindel
,
S. K.
Lamoreaux
,
K. W.
Lehnert
,
S. M.
Lewis
,
M.
Malnou
,
R. H.
Maruyama
,
D. A.
Palken
,
N. M.
Rapidis
,
J. R.
Root
,
M.
Simanovskaia
,
T. M.
Shokair
,
D. H.
Speller
,
I.
Urdinaran
, and
K. A.
van Bibber
, “
Results from phase 1 of the haystac microwave cavity axion experiment
,”
Phys. Rev. D
97
,
092001
(
2018
).
20.
B. M.
Brubaker
,
L.
Zhong
,
S. K.
Lamoreaux
,
K. W.
Lehnert
, and
K. A.
van Bibber
, “
Haystac axion search analysis procedure
,”
Phys. Rev. D
96
,
123008
(
2017
).
21.
B. M.
Brubaker
,
L.
Zhong
,
Y. V.
Gurevich
,
S. B.
Cahn
,
S. K.
Lamoreaux
,
M.
Simanovskaia
,
J. R.
Root
,
S. M.
Lewis
,
S.
Al Kenany
,
K. M.
Backes
,
I.
Urdinaran
,
N. M.
Rapidis
,
T. M.
Shokair
,
K. A.
van Bibber
,
D. A.
Palken
,
M.
Malnou
,
W. F.
Kindel
,
M. A.
Anil
,
K. W.
Lehnert
, and
G.
Carosi
, “
First results from a microwave cavity axion search at 24 μeV
,”
Phys. Rev. Lett.
118
,
061302
(
2017
).
22.
C.
Hagmann
,
D.
Kinion
,
W.
Stoeffl
,
K.
van Bibber
,
E.
Daw
,
H.
Peng
,
L. J.
Rosenberg
,
J.
LaVeigne
,
P.
Sikivie
,
N. S.
Sullivan
,
D. B.
Tanner
,
F.
Nezrick
,
M. S.
Turner
,
D. M.
Moltz
,
J.
Powell
, and
N. A.
Golubev
, “
Results from a high-sensitivity search for cosmic axions
,”
Phys. Rev. Lett.
80
,
2043
2046
(
1998
).
23.
S. J.
Asztalos
,
R. F.
Bradley
,
L.
Duffy
,
C.
Hagmann
,
D.
Kinion
,
D. M.
Moltz
,
L. J.
Rosenberg
,
P.
Sikivie
,
W.
Stoeffl
,
N. S.
Sullivan
,
D. B.
Tanner
,
K.
van Bibber
, and
D. B.
Yu
, “
Improved rf cavity search for halo axions
,”
Phys. Rev. D
69
,
011101(R)
(
2004
).
24.
S. J.
Asztalos
,
E.
Daw
,
H.
Peng
,
L. J.
Rosenberg
,
D. B.
Yu
,
C.
Hagmann
,
D.
Kinion
,
W.
Stoeffl
,
K.
van Bibber
,
J.
LaVeigne
,
P.
Sikivie
,
N. S.
Sullivan
,
D. B.
Tanner
,
F.
Nezrick
, and
D. M.
Moltz
, “
Experimental constraints on the axion dark matter halo density
,”
Astrophys. J. Lett.
571
,
L27
(
2002
).
25.
O.
Kwon
,
D.
Lee
,
W.
Chung
,
D.
Ahn
,
H.
Byun
,
F.
Caspers
,
H.
Choi
,
J.
Choi
,
Y.
Chong
,
H.
Jeong
et al, “
First results from an axion haloscope at capp around 10.7 μ ev
,”
Phys. Rev. Lett.
126
,
191802
(
2021
).
26.
J.
Choi
,
S.
Ahn
,
B. R.
Ko
,
S.
Lee
, and
Y. K.
Semertzidis
, “
Capp-8tb: Axion dark matter search experiment around 6.7 μev
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1013
,
165667
(
2021
).
27.
D.
Alesini
,
C.
Braggio
,
G.
Carugno
,
N.
Crescini
,
D.
D’Agostino
,
D.
Di Gioacchino
,
R.
Di Vora
,
P.
Falferi
,
U.
Gambardella
,
C.
Gatti
,
G.
Iannone
,
C.
Ligi
,
A.
Lombardi
,
G.
Maccarrone
,
A.
Ortolan
,
R.
Pengo
,
A.
Rettaroli
,
G.
Ruoso
,
L.
Taffarello
, and
S.
Tocci
, “
Search for invisible axion dark matter of mass ma = 43 μeV with the quax– experiment
,”
Phys. Rev. D
103
,
102004
(
2021
).
28.
M.
Mück
,
M.-O.
André
,
J.
Clarke
,
J.
Gail
, and
C.
Heiden
, “
Radio-frequency amplifier based on a niobium dc superconducting quantum interference device with microstrip input coupling
,”
Appl. Phys. Lett.
72
,
2885
2887
(
1998
).
29.
M.
Hatridge
,
R.
Vijay
,
D. H.
Slichter
,
J.
Clarke
, and
I.
Siddiqi
, “
Dispersive magnetometry with a quantum limited squid parametric amplifier
,”
Phys. Rev. B
83
,
134501
(
2011
).
30.
S.
Boutin
,
D. M.
Toyli
,
A. V.
Venkatramani
,
A. W.
Eddins
,
I.
Siddiqi
, and
A.
Blais
, “
Effect of higher-order nonlinearities on amplification and squeezing in josephson parametric amplifiers
,”
Phys. Rev. Applied
8
,
054030
(
2017
).
31.
T.
Roy
,
S.
Kundu
,
M.
Chand
,
A. M.
Vadiraj
,
A.
Ranadive
,
N.
Nehra
,
M. P.
Patankar
,
J.
Aumentado
,
A. A.
Clerk
, and
R.
Vijay
, “
Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
,”
Appl. Phys. Lett.
107
,
262601
(
2015
).
32.
J.
Aumentado
, “
Superconducting parametric amplifiers: The state of the art in josephson parametric amplifiers
,”
IEEE Microwave Magazine
21
,
45
59
(
2020
).
33.
C.
Braggio
,
G.
Cappelli
,
G.
Carugno
,
N.
Crescini
,
R.
Di Vora
,
M.
Esposito
,
A.
Ortolan
,
L.
Planat
,
A.
Ranadive
,
N.
Roch
et al, “
A haloscope amplification chain based on a traveling wave parametric amplifier
,”
Rev. Sci. Instrum.
93
,
094701
(
2022
).
34.
H.
Johnston
, “
Us invests $249 m in quantum tech
,”
Phys. World
31
,
9
(
2018
).
35.
A.
Arvanitaki
,
S.
Dimopoulos
,
M.
Galanis
,
L.
Lehner
,
J. O.
Thompson
, and
K.
Van Tilburg
, “
Large-misalignment mechanism for the formation of compact axion structures: Signatures from the qcd axion to fuzzy dark matter
,”
Phys. Rev. D
101
,
083014
(
2020
).
36.
L. J.
Rosenberg
, “
Final report for the admx phase 2a project at the university of Washington
,” Tech. Rep. (
Univ. of Washington
,
Seattle, WA
,
2015
).
37.
C.
Boutan
,
A piezoelectrically tuned RF-cavity search for dark matter axions
, Ph.D. thesis,
University of Washington
(
2017
).
39.
COMSOL AB, Stockholm, Sweden, “Comsol multiphysics®.”
40.
“Low noise factory hfet amplifier,” https://www.lownoisefactory.com/files/7015/7825/6000/LNF-LNC4_8C.pdf, accessed: 2021-09-23.
41.
K.
O’Brien
,
C.
Macklin
,
I.
Siddiqi
, and
X.
Zhang
, “
Resonant phase matching of josephson junction traveling wave parametric amplifiers
,”
Phys. Rev. Lett.
113
,
157001
(
2014
).
42.
H. A.
Haus
and
J. A.
Mullen
, “
Quantum noise in linear amplifiers
,”
Phys. Rev.
128
,
2407
2413
(
1962
).
43.
T.
Braine
et al (
ADMX Collaboration
), “
Extended search for the invisible axion with the axion dark matter experiment
,”
Phys. Rev. Lett.
124
,
101303
(
2020
).
44.
R.
Khatiwada
,
D.
Bowring
,
A. S.
Chou
,
A.
Sonnenschein
,
W.
Wester
,
D. V.
Mitchell
,
T.
Braine
,
C.
Bartram
,
R.
Cervantes
,
N.
Crisosto
et al, “
Axion dark matter experiment: Detailed design and operations
,”
Rev. Sci. Instrum.
92
,
124502
(
2021
).
45.
E.
Daw
and
R. F.
Bradley
, “
Effect of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier
,”
J. Appl. Phys.
82
,
1925
1929
(
1997
).
46.
“Keycom,” https://www.keycom.co.jp/eproducts/upj/upj2/page.htm, accessed: 2021-09-26.
47.
C.
Macklin
,
K.
O’Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near–quantum-limited josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
48.
S.
Simbierowicz
,
V.
Vesterinen
,
J.
Milem
,
A.
Lintunen
,
M.
Oksanen
,
L.
Roschier
,
L.
Grönberg
,
J.
Hassel
,
D.
Gunnarsson
, and
R. E.
Lake
, “
Characterizing cryogenic amplifiers with a matched temperature-variable noise source
,”
Rev. Sci. Instrum.
92
,
034708
(
2021
).
49.
E. J.
Daw
, “
A search for halo axions
,” Ph.D. thesis (
MIT
,
2022
).
50.
M. S.
Turner
, “
Cosmic and local mass density of ‘invisible’ axions
,”
Phys. Rev. D
33
,
889
896
(
1986
).
51.
M. S.
Turner
, “
Periodic signatures for the detection of cosmic axions
,”
Phys. Rev. D
42
,
3572
(
1990
).
52.
C.
Collaboration
et al, “
New cast limit on the axion–photon interaction
,”
Nature Physics
13
,
584
590
(
2017
).
53.
See https://www.snowmass21.org/ for “Snowmass 2021-letter of interest frequency multiplexed dark matter axionsearches,” by
G.
Carosi
.
You do not currently have access to this content.