We have developed a versatile near-field microscopy platform that can operate at high magnetic fields and below liquid-helium temperatures. We use this platform to demonstrate an extreme terahertz (THz) nanoscope operation and to obtain the first cryogenic magneto-THz time-domain nano-spectroscopy/imaging at temperatures as low as 1.8 K, magnetic fields of up to 5 T, and with operation of 0–2 THz. Our Cryogenic Magneto-Terahertz Scattering-type Scanning Near-field Optical Microscope (or cm-THz-sSNOM) instrument is comprised of three main equipment: (i) a 5 T split pair magnetic cryostat with a custom made insert, (ii) a custom sSNOM instrument capable of accepting ultrafast THz excitation, and (iii) a MHz repetition rate, femtosecond laser amplifier for broadband THz pulse generation and sensitive detection. We apply the cm-THz-sSNOM to obtain proof of principle measurements of superconductors and topological semimetals. The new capabilities demonstrated break grounds for studying quantum materials that require an extreme environment of cryogenic operation and/or applied magnetic fields in nanometer space, femtosecond time, and THz energy scales.

1.
B.
Knoll
and
F.
Keilmann
,
Nature
399
,
134
(
1999
).
2.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
,
Nature
418
,
159
(
2002
).
3.
M. M.
Qazilbash
,
M.
Brehm
,
B.-G.
Chae
,
P.-C.
Ho
,
G. O.
Andreev
,
B.-J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H.-T.
Kim
, and
D. N.
Basov
,
Science
318
,
1750
(
2007
).
4.
J.
Chen
,
M.
Badioli
,
P.
Alonso-González
,
S.
Thongrattanasiri
,
F.
Huth
,
J.
Osmond
,
M.
Spasenović
,
A.
Centeno
,
A.
Pesquera
,
P.
Godignon
,
A.
Zurutuza Elorza
,
N.
Camara
,
F. J. G.
de Abajo
,
R.
Hillenbrand
, and
F. H. L.
Koppens
,
Nature
487
,
77
(
2012
).
5.
Z.
Fei
,
A. S.
Rodin
,
G. O.
Andreev
,
W.
Bao
,
A. S.
McLeod
,
M.
Wagner
,
L. M.
Zhang
,
Z.
Zhao
,
M.
Thiemens
,
G.
Dominguez
,
M. M.
Fogler
,
A. H. C.
Neto
,
C. N.
Lau
,
F.
Keilmann
, and
D. N.
Basov
,
Nature
487
,
82
(
2012
).
6.
F.
Hu
,
Y.
Luan
,
M. E.
Scott
,
J.
Yan
,
D. G.
Mandrus
,
X.
Xu
, and
Z.
Fei
,
Nat. Photonics
11
,
356
(
2017
).
7.
J.
Nishida
,
A. H.
Alfaifi
,
T. P.
Gray
,
S. E.
Shaheen
, and
M. B.
Raschke
,
ACS Energy Lett.
5
,
1636
(
2020
).
8.
N. C. H.
Hesp
,
I.
Torre
,
D.
Rodan-Legrain
,
P.
Novelli
,
Y.
Cao
,
S.
Carr
,
S.
Fang
,
P.
Stepanov
,
D.
Barcons-Ruiz
,
H.
Herzig Sheinfux
,
K.
Watanabe
,
T.
Taniguchi
,
D. K.
Efetov
,
E.
Kaxiras
,
P.
Jarillo-Herrero
,
M.
Polini
, and
F. H. L.
Koppens
,
Nat. Phys.
17
,
1162
(
2021
).
9.
H. U.
Yang
,
E.
Hebestreit
,
E. E.
Josberger
, and
M. B.
Raschke
,
Rev. Sci. Instrum.
84
,
023701
(
2013
).
10.
G. X.
Ni
,
A. S.
McLeod
,
Z.
Sun
,
L.
Wang
,
L.
Xiong
,
K. W.
Post
,
S. S.
Sunku
,
B.-Y.
Jiang
,
J.
Hone
,
C. R.
Dean
,
M. M.
Fogler
, and
D. N.
Basov
,
Nature
557
,
530
(
2018
).
11.
K.-T.
Lin
,
S.
Komiyama
,
S.
Kim
,
K.-i.
Kawamura
, and
Y.
Kajihara
,
Rev. Sci. Instrum.
88
,
013706
(
2017
).
12.
M.
Dapolito
,
X.
Chen
,
C.
Li
,
M.
Tsuneto
,
S.
Zhang
,
X.
Du
,
M.
Liu
, and
A.
Gozar
,
Appl. Phys. Lett.
120
,
013104
(
2022
).
13.
W.
Zhao
,
H.
Li
,
X.
Xiao
,
Y.
Jiang
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Zettl
, and
F.
Wang
,
Nano Lett.
21
,
3106
(
2021
).
14.
N.
Hartmann
,
X.
Wang
, and
A. J.
Huber
, in
2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)
,
2021
.
15.
H.-T.
Chen
,
R.
Kersting
, and
G. C.
Cho
,
Appl. Phys. Lett.
83
,
3009
(
2003
).
16.
H.-G.
von Ribbeck
,
M.
Brehm
,
D. W.
van der Weide
,
S.
Winnerl
,
O.
Drachenko
,
M.
Helm
, and
F.
Keilmann
,
Opt. Express
16
,
3430
(
2008
).
17.
J.
Zhang
,
X.
Chen
,
S.
Mills
,
T.
Ciavatti
,
Z.
Yao
,
R.
Mescall
,
H.
Hu
,
V.
Semenenko
,
Z.
Fei
,
H.
Li
,
V.
Perebeinos
,
H.
Tao
,
Q.
Dai
,
X.
Du
, and
M.
Liu
,
ACS Photonics
5
,
2645
(
2018
).
18.
H. T.
Stinson
,
A.
Sternbach
,
O.
Najera
,
R.
Jing
,
A. S.
Mcleod
,
T. V.
Slusar
,
A.
Mueller
,
L.
Anderegg
,
H. T.
Kim
,
M.
Rozenberg
, and
D. N.
Basov
,
Nat. Commun.
9
,
3604
(
2018
).
19.
K.
Moon
,
Y.
Do
,
H.
Park
,
J.
Kim
,
H.
Kang
,
G.
Lee
,
J.-H.
Lim
,
J.-W.
Kim
, and
H.
Han
,
Sci. Rep.
9
,
16915
(
2019
).
20.
R. H. J.
Kim
,
C.
Huang
,
Y.
Luan
,
L.-L.
Wang
,
Z.
Liu
,
J.-M.
Park
,
L.
Luo
,
P. M.
Lozano
,
G.
Gu
,
D.
Turan
,
N. T.
Yardimci
,
M.
Jarrahi
,
I. E.
Perakis
,
Z.
Fei
,
Q.
Li
, and
J.
Wang
,
ACS Photonics
8
,
1873
(
2021
).
21.
R. H. J.
Kim
,
Z.
Liu
,
C.
Huang
,
J.-M.
Park
,
S. J.
Haeuser
,
Z.
Song
,
Y.
Yan
,
Y.
Yao
,
L.
Luo
, and
J.
Wang
,
ACS Photonics
9
,
3550
(
2022
).
22.
A.
Pizzuto
,
E.
Castro-Camus
,
W.
Wilson
,
W.
Choi
,
X.
Li
, and
D. M.
Mittleman
,
ACS Photonics
8
,
2904
(
2021
).
23.
M.
Plankl
,
P. E.
Faria Junior
,
F.
Mooshammer
,
T.
Siday
,
M.
Zizlsperger
,
F.
Sandner
,
F.
Schiegl
,
S.
Maier
,
M. A.
Huber
,
M.
Gmitra
,
J.
Fabian
,
J. L.
Boland
,
T. L.
Cocker
, and
R.
Huber
,
Nat. Photonics
15
,
594
(
2021
).
24.
M. M.
Wiecha
,
R.
Kapoor
, and
H. G.
Roskos
,
APL Photonics
6
,
126108
(
2021
).
25.
X.
Guo
,
K.
Bertling
, and
A. D.
Rakić
,
Appl. Phys. Lett.
118
,
041103
(
2021
).
26.
X.
Yang
,
C.
Vaswani
,
C.
Sundahl
,
M.
Mootz
,
P.
Gagel
,
L.
Luo
,
J. H.
Kang
,
P. P.
Orth
,
I. E.
Perakis
,
C. B.
Eom
, and
J.
Wang
,
Nat. Mater.
17
,
586
(
2018
).
27.
X.
Yang
,
C.
Vaswani
,
C.
Sundahl
,
M.
Mootz
,
L.
Luo
,
J. H.
Kang
,
I. E.
Perakis
,
C. B.
Eom
, and
J.
Wang
,
Nat. Photonics
13
,
707
(
2019
).
28.
C.
Vaswani
,
J. H.
Kang
,
M.
Mootz
,
L.
Luo
,
X.
Yang
,
C.
Sundahl
,
D.
Cheng
,
C.
Huang
,
R. H. J.
Kim
,
Z.
Liu
,
Y. G.
Collantes
,
E. E.
Hellstrom
,
I. E.
Perakis
,
C. B.
Eom
, and
J.
Wang
,
Nat. Commun.
12
,
258
(
2021
).
29.
L.
Luo
,
D.
Cheng
,
B.
Song
,
L.-L.
Wang
,
C.
Vaswani
,
P. M.
Lozano
,
G.
Gu
,
C.
Huang
,
R. H. J.
Kim
,
Z.
Liu
,
J.-M.
Park
,
Y.
Yao
,
K.
Ho
,
I. E.
Perakis
,
Q.
Li
, and
J.
Wang
,
Nat. Mater.
20
,
329
(
2021
).
30.
L.
Luo
,
M.
Mootz
,
J. H.
Kang
,
C.
Huang
,
K.
Eom
,
J. W.
Lee
,
C.
Vaswani
,
Y. G.
Collantes
,
E. E.
Hellstrom
,
I. E.
Perakis
,
C. B.
Eom
, and
J.
Wang
,
Nat. Phys.
19
,
201
(
2023
).
31.
T. L.
Cocker
,
D.
Peller
,
P.
Yu
,
J.
Repp
, and
R.
Huber
,
Nature
539
,
263
(
2016
).
32.
L.
Wang
,
Y.
Xia
, and
W.
Ho
,
Science
376
,
401
(
2022
).
33.
A.
Patz
,
T.
Li
,
X.
Liu
,
J. K.
Furdyna
,
I. E.
Perakis
, and
J.
Wang
,
Phys. Rev. B
91
,
155108
(
2015
).
34.
J.
Wang
,
G. A.
Khodaparast
,
J.
Kono
,
A.
Oiwa
, and
H.
Munekata
,
J. Mod. Opt.
51
(
16–18
),
2771
2780
(
2004
).
35.
J.
Wang
,
G. A.
Khodaparast
,
J.
kono
,
T.
Slupinski
,
A.
Oiwa
, and
H.
Munekata
,
Physica E Low Dimens. Syst. Nanostruct.
20
(
3–4
),
412
418
(
2004
).
36.
X.
Yang
,
L.
Luo
,
C.
Vaswani
et al,
Npj Quantum Mater.
5
,
13
(
2020
).
37.
L.
Luo
,
X.
Yang
,
X.
Liu
et al,
Nat. Commun.
10
,
607
(
2019
).
38.
C.
Vaswani
,
L.-L.
Wang
,
D. H.
Mudiyanselage
,
Q.
Li
,
P. M.
Lozano
,
G. D.
Gu
,
D.
Cheng
,
B.
Song
,
L.
Luo
,
R. H. J.
Kim
,
C.
Huang
,
Z.
Liu
,
M.
Mootz
,
I. E.
Perakis
,
Y.
Yao
,
K. M.
Ho
, and
J.
Wang
,
Phys. Rev. X
10
,
021013
(
2020
).
39.
M. E.
Barber
,
E. Y.
Ma
, and
Z.-X.
Shen
,
Nat. Rev. Phys.
4
,
61
(
2022
).
40.
M.
van Exter
,
C.
Fattinger
, and
D.
Grischkowsky
,
Opt. Lett.
14
,
1128
(
1989
).
41.
P.
Rasekh
,
A.
Safari
,
M.
Yildirim
,
R.
Bhardwaj
,
J.-M.
Ménard
,
K.
Dolgaleva
, and
R. W.
Boyd
,
ACS Photonics
8
,
1683
(
2021
).
42.
P.
Klarskov
,
H.
Kim
,
V. L.
Colvin
, and
D. M.
Mittleman
,
ACS Photonics
4
,
2676
(
2017
).
43.
T.
Taubner
,
F.
Keilmann
, and
R.
Hillenbrand
,
J. Korean Phys. Soc.
47
,
S213
S216
(
2005
).
44.
L.
Mester
,
A. A.
Govyadinov
, and
R.
Hillenbrand
,
Nanophotonics
11
,
377
(
2022
).
45.
K.
Tamasaku
,
Y.
Nakamura
, and
S.
Uchida
,
Phys. Rev. Lett.
69
,
1455
(
1992
).

Supplementary Material

You do not currently have access to this content.