This paper presents novel surface profilometry for both geometric part error and metallurgical material property distribution measurements of the additively manufactured and post-processed rods. The measurement system, the so-called fiber optic-eddy current sensor, consists of a fiber optic displacement sensor and an eddy current sensor. The electromagnetic coil was wrapped around the probe of the fiber optic displacement sensor. The fiber optic displacement sensor was used to measure the surface profile, and the eddy current sensor was used to measure the change in permeability of the rod under varying electromagnetic excitation conditions. The permeability of the material changes upon exposure to mechanical forces, such as compression or extension and high temperatures. The geometric part error and material property profiles of the rods were successfully extracted by using a reversal method that is conventionally used for spindle error separation. The fiber optic displacement sensor and the eddy current sensor developed in this study have a resolution of 0.286 µm and 0.00359 μr, respectively. The proposed method was applied not only to characterize the rods but also to characterize composite rods.

1.
I.
Gibson
,
D. W.
Rosen
,
B.
Stucker
,
M.
Khorasani
,
D.
Rosen
,
B.
Stucker
, and
M.
Khorasani
,
Additive Manufacturing Technologies
(
Springer
,
Cham, Switzerland
,
2021
), Vol. 17.
2.
K. V.
Wong
and
A.
Hernandez
,
A Review of Additive Manufacturing
(
International Scholarly Research Notices
,
2012
).
3.
D.
Bourell
,
J. P.
Kruth
,
M.
Leu
,
G.
Levy
,
D.
Rosen
,
A. M.
Beese
, and
A.
Clare
, “
Materials for additive manufacturing
,”
CIRP Ann.
66
(
2
),
659
681
(
2017
).
4.
B. M.
Colosimo
,
Q.
Huang
,
T.
Dasgupta
, and
F.
Tsung
, “
Opportunities and challenges of quality engineering for additive manufacturing
,”
J. Qual. Technol.
50
(
3
),
233
252
(
2018
).
5.
J. P.
Oliveira
,
A. D.
LaLonde
, and
J.
Ma
, “
Processing parameters in laser powder bed fusion metal additive manufacturing
,”
Mater. Des.
193
,
108762
(
2020
).
6.
J. S.
Kim
,
B. J.
Kang
, and
S. W.
Lee
, “
An experimental study on microstructural characteristics and mechanical properties of stainless-steel 316L parts using directed energy deposition (DED) process
,”
J. Mech. Sci. Technol.
33
(
12
),
5731
5737
(
2019
).
7.
A.
Leicht
,
M.
Rashidi
,
U.
Klement
, and
E.
Hryha
, “
Effect of process parameters on the microstructure, tensile strength and productivity of 316L parts produced by laser powder bed fusion
,”
Mater. Charact.
159
,
110016
(
2020
).
8.
M.
Zhang
,
C.-N.
Sun
,
X.
Zhang
,
P. C.
Goh
,
J.
Wei
,
D.
Hardacre
, and
H.
Li
, “
Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters
,”
Mater. Sci. Eng., A
703
,
251
261
(
2017
).
9.
A.
Saboori
,
G.
Piscopo
,
M.
Lai
,
A.
Salmi
, and
S.
Biamino
, “
An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition
,”
Mater. Sci. Eng., A
780
,
139179
(
2020
).
10.
A.
du Plessis
, “
Effects of process parameters on porosity in laser powder bed fusion revealed by x-ray tomography
,”
Addit. Manuf.
30
,
100871
(
2019
).
11.
S.
Marola
,
S.
Bosia
,
A.
Veltro
,
G.
Fiore
,
D.
Manfredi
,
M.
Lombardi
,
G.
Amato
,
M.
Baricco
, and
L.
Battezzati
, “
Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and x-ray diffraction analysis
,”
Mater. Des.
202
,
109550
(
2021
).
12.
J. H. L.
Pang
,
J.
Kaminski
, and
H.
Pepin
, “
Characterisation of porosity, density, and microstructure of directed energy deposited stainless steel AISI 316L
,”
Addit. Manuf.
25
,
286
296
(
2019
).
13.
C.
Kim
,
H.
Yin
,
A.
Shmatok
,
B. C.
Prorok
,
X.
Lou
, and
K. H.
Matlack
, “
Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
,”
Addit. Manuf.
38
,
101800
(
2021
).
14.
V.
Pandiyan
,
R.
Drissi-Daoudi
,
S.
Shevchik
,
G.
Masinelli
,
T.
Le-Quang
,
R.
Logé
, and
K.
Wasmer
, “
Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions
,”
Virtual Phys. Prototyping
16
(
4
),
481
497
(
2021
).
15.
Z.
Li
,
X.
Liu
,
S.
Wen
,
P.
He
,
K.
Zhong
,
Q.
Wei
,
Y.
Shi
, and
S.
Liu
, “
In situ 3D monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods
,”
Sensors
18
(
4
),
1180
(
2018
).
16.
Z.
Smoqi
,
L. D.
Sotelo
,
A.
Gaikwad
,
J. A.
Turner
, and
P.
Rao
, “
Ultrasonic nondestructive evaluation of additively manufactured wear coatings
,”
NDT&E Int.
133
,
102754
(
2022
).
17.
L. W.
Koester
,
H.
Taheri
,
T. A.
Bigelow
,
L. J.
Bond
, and
E. J.
Faierson
, “
In-situ acoustic signature monitoring in additive manufacturing processes
,”
AIP Conf. Proc.
1949
(
1
),
020006
(
2018
).
18.
B.
Zhang
,
S.
Liu
, and
Y. C.
Shin
, “
In-process monitoring of porosity during laser additive manufacturing process
,”
Addit. Manuf.
28
,
497
505
(
2019
).
19.
Q. Y.
Lu
and
C. H.
Wong
, “
Additive manufacturing process monitoring and control by non-destructive testing techniques: Challenges and in-process monitoring
,”
Virtual Phys. Prototyping
13
(
2
),
39
48
(
2018
).
20.
C.
Mandache
, “
Overview of non-destructive evaluation techniques for metal-based additive manufacturing
,”
Mater. Sci. Technol.
35
(
9
),
1007
1015
(
2019
).
21.
K.
Okarma
and
J.
Fastowicz
, “
Computer vision methods for non-destructive quality assessment in additive manufacturing
,” in
International Conference on Computer Recognition Systems
(
Springer
,
Cham
,
2019
), pp.
11
20
.
22.
P.
Charalampous
,
I.
Kostavelis
, and
D.
Tzovaras
, “
Non-destructive quality control methods in additive manufacturing: A survey
,”
Rapid Prototyping J.
26
,
777
(
2020
).
23.
P. G.
Davis
,
J.
Bush
, and
G. S.
Maurer
, “
Fiber optic displacement sensor
,”
Proc. SPIE
3489
,
18
22
(
1998
).
24.
X.
Ma
,
A. J.
Peyton
, and
Y. Y.
Zhao
, “
Eddy current measurements of electrical conductivity and magnetic permeability of porous metals
,”
NDT&E Int.
39
(
7
),
562
568
(
2006
).
25.
Z.
Geng
,
Z.
Tong
, and
X.
Jiang
, “
Review of geometric error measurement and compensation techniques of ultra-precision machine tools
,”
Light: Adv. Manuf.
2
(
2
),
211
227
(
2021
).
26.
H.
Cui
,
D.
Lei
,
X.
Zhang
,
H.
Lan
,
Z.
Jiang
, and
L.
Kong
, “
Measurement and analysis of the radial motion error of aerostatic ultra-precision spindle
,”
Measurement
137
,
624
635
(
2019
).
27.
U.
Meier
, “
Carbon fiber-reinforced polymers: Modern materials in bridge engineering
,”
Struct. Eng. Int.
2
(
1
),
7
12
(
1992
).
You do not currently have access to this content.