Surface electromyography (sEMG) is considered an established means for controlling prosthetic devices. sEMG suffers from serious issues such as electrical noise, motion artifact, complex acquisition circuitry, and high measuring costs because of which other techniques have gained attention. This work presents a new optoelectronic muscle (OM) sensor setup as an alternative to the EMG sensor for precise measurement of muscle activity. The sensor integrates a near-infrared light-emitting diode and phototransistor pair along with the suitable driver circuitry. The sensor measures skin surface displacement (that occurs during muscle contraction) by detecting backscattered infrared light from skeletal muscle tissue. With an appropriate signal processing scheme, the sensor was able to produce a 0–5 V output proportional to the muscular contraction. The developed sensor depicted decent static and dynamic features. In detecting muscle contractions from the forearm muscles of subjects, the sensor showed good similarity with the EMG sensor. In addition, the sensor displayed higher signal-to-noise ratio values and better signal stability than the EMG sensor. Furthermore, the OM sensor setup was utilized to control the rotation of the servomotor using an appropriate control scheme. Hence, the developed sensing system can measure muscle contraction information for controlling assistive devices.

1.
N.
Rahe-Meyer
,
C.
Weilbach
,
M.
Karst
,
M.
Pawlak
,
A.
Ahmed
,
S.
Piepenbrock
, and
M.
Winterhalter
,
Biomed. Eng. Online
6
,
1
(
2007
).
2.
C. J.
De Luca
,
J. Appl. Biomech.
13
,
135
(
1997
).
3.
S.
Day
,
Important Factors in Surface EMG Measurement
(
Bortec Biomedical Ltd. Publishers
,
Calgary
,
2002
), pp.
1
7
.
4.
D.
Esposito
,
E.
Andreozzi
,
A.
Fratini
,
G.
Gargiulo
,
S.
Savino
,
V.
Niola
, and
P.
Bifulco
,
Sensors
18
,
2553
(
2018
).
5.
A.
Prakash
,
N.
Sharma
, and
S.
Sharma
,
Instrum. Sci. Technol.
48
,
43
(
2020
).
6.
M. O.
Ibitoye
,
N. A.
Hamzaid
,
J. M.
Zuniga
, and
A. K.
Abdul Wahab
,
Clin. Biomech.
29
,
691
(
2014
).
7.
D.
Graupe
,
J.
Magnussen
, and
A.
Beex
,
IEEE Trans. Autom. Control
23
,
538
(
1978
).
8.
J.
Lobo-Prat
,
P. N.
Kooren
,
A. H.
Stienen
,
J. L.
Herder
,
B. F.
Koopman
, and
P. H.
Veltink
,
J. Neuroeng. Rehabil.
11
,
168
(
2014
).
9.
A.
Prakash
and
S.
Sharma
,
Phys. Eng. Sci. Med.
44
,
229
(
2021
).
10.
T.
Lenzi
,
S. M. M.
De Rossi
,
N.
Vitiello
, and
M. C.
Carrozza
,
IEEE Trans. Biomed. Eng.
59
,
2180
(
2012
).
11.
A.
Prakash
,
N.
Sharma
,
A. K.
Katiyar
,
S. K.
Dubey
, and
S.
Sharma
,
Sens. Actuators, A
344
,
113709
(
2022
).
12.
J. V.
Basmajian
and
C. J.
de Luca
,
Muscles Alive: Their Functions Revealed by Electromyography
(
Williams & Wilkins
,
Baltimore
,
1985
).
13.
D.
Esposito
,
J.
Centracchio
,
E.
Andreozzi
,
G. D.
Gargiulo
,
G. R.
Naik
, and
P.
Bifulco
,
Sensors
21
,
6863
(
2021
).
14.
J. A.
George
,
T. S.
Davis
,
M. R.
Brinton
, and
G. A.
Clark
,
J. Neurosci. Methods
330
,
108462
(
2020
).
15.
N.
Jiang
,
H.
Rehbaum
,
I.
Vujaklija
,
B.
Graimann
, and
D.
Farina
,
IEEE Trans. Neural Syst. Rehabil. Eng.
22
,
501
(
2014
).
16.
R.
Chowdhury
,
M.
Reaz
,
M.
Ali
,
A.
Bakar
,
K.
Chellappan
, and
T.
Chang
,
Sensors
13
,
12431
(
2013
).
17.
M. Z.
Jamal
,
Computational Intelligence in Electromyography Analysis: A Perspective on Current Applications and Future Challenges
(
IntechOpen
,
2012
).
18.
A.
Searle
and
L.
Kirkup
,
Physiol. Meas.
21
,
271
(
2000
).
19.
X.
Jiang
,
L.-K.
Merhi
,
Z. G.
Xiao
, and
C.
Menon
,
Med. Eng. Phys.
41
,
63
(
2017
).
20.
N.
Sharma
,
A.
Prakash
,
A. K.
Sahi
,
N.
Sharma
, and
S.
Sharma
,
Instrum. Sci. Technol.
49
,
146
(
2021
).
21.
A.
Prakash
,
N.
Sharma
, and
S.
Sharma
,
Sens. Actuators, A
325
,
112699
(
2021
).
22.
E.
Cho
,
R.
Chen
,
L.-K.
Merhi
,
Z.
Xiao
,
B.
Pousett
, and
C.
Menon
,
Front. Bioeng. Biotechnol.
4
,
18
(
2016
).
23.
A.
Radmand
,
E.
Scheme
, and
K.
Englehart
,
J. Rehabil. Res. Dev.
53
,
443
(
2016
).
24.
A.
Prakash
,
A. K.
Sahi
,
N.
Sharma
, and
S.
Sharma
,
Biomed. Signal Process. Control
62
,
102122
(
2020
).
25.
P.
Lukowicz
,
F.
Hanser
,
C.
Szubski
, and
W.
Schobersberger
, in
Pervasive Computing
, edited by
K. P.
Fishkin
,
B.
Schiele
,
P.
Nixon
, and
A.
Quigley
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
101
116
.
26.
H.
Junker
,
O.
Amft
,
P.
Lukowicz
, and
G.
Tröster
,
Pattern Recognit.
41
,
2010
(
2008
).
27.
I.
Talib
,
K.
Sundaraj
,
C. K.
Lam
,
M. A.
Ali
, and
J.
Hussain
, in
Intelligent Manufacturing and Mechatronics
, edited by
Z.
Jamaludin
and
M. N.
Ali Mokhtar
(
Springer
,
Singapore
,
2020
), pp.
129
137
.
28.
C.
Orizio
and
M.
Gobbo
,
Wiley Encyclopedia of Biomedical Engineering
(
John Wiley & Sons, Ltd.
,
2006
).
29.
R. B.
Woodward
,
M. J.
Stokes
,
S. J.
Shefelbine
, and
R.
Vaidyanathan
,
Sci. Rep.
9
,
5569
(
2019
).
30.
M. A.
Islam
,
K.
Sundaraj
,
R. B.
Ahmad
,
N. U.
Ahamed
, and
M. A.
Ali
,
IEEE Sens. J.
13
,
2499
(
2013
).
31.
A.
Islam
,
K.
Sundaraj
,
B.
Ahmad
,
N. U.
Ahamed
, and
A.
Ali
,
J. Phys. Ther. Sci.
24
,
1359
(
2012
).
32.
H. H.
Muhammed
and
J.
Raghavendra
,
Measurements
10
,
13
(
2015
).
33.
A.
Chianura
and
M. E.
Giardini
,
Med. Biol. Eng. Comput.
48
,
731
(
2010
).
34.
A. K.
Bansal
,
S.
Hou
,
O.
Kulyk
,
E. M.
Bowman
, and
I. D. W.
Samuel
,
Adv. Mater.
27
,
7638
(
2015
).
35.
A. N.
Bashkatov
,
E. A.
Genina
,
V. I.
Kochubey
, and
V. V.
Tuchin
,
J. Phys. D: Appl. Phys.
38
,
2543
(
2005
).
36.
K. P.
Nielsen
,
L.
Zhao
,
J. J.
Stamnes
,
K.
Stamnes
, and
J.
Moan
,
Sol. Radiat. Hum. Health
1
,
35
46
(
2008
).
37.
I. D. W.
Samuel
,
A. K.
Bansal
,
S.
Hou
, and
O.
Kulyk
,
SPIE Newsroom
1
3
(
2015
).
38.
R.
Subramaniam
,
An IR Muscle Contraction Sensor
(
Cornell University
,
2013
).
39.
H. H.
Muhammed
and
R.
Jammalamadaka
, in
2016 1st International Conference on Biomedical Engineering (IBIOMED)
(
IEEE
,
2016
), pp.
1
6
.
40.
M.
Sikora
and
S.
Paszkiel
,
IFAC-PapersOnLine
52
,
329
(
2019
).
41.
A.
Maereg
,
Y.
Lou
,
E.
Secco
, and
R.
King
, in
Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
(
SCITEPRESS–Science and Technology Publications
,
Valletta, Malta
,
2020
), pp.
110
117
.
42.
W.
Guo
,
X.
Sheng
,
H.
Liu
, and
X.
Zhu
,
IEEE Sens. J.
16
,
447
(
2016
).
43.
M.
Paleari
,
R.
Luciani
, and
P.
Ariano
, in
2017 International Conference on Rehabilitation Robotics (ICORR)
(
IEEE
,
2017
), pp.
1506
1511
.
44.
S.
Herrmann
,
A.
Attenberger
, and
K.
Buchenrieder
, in
Computer Aided Systems Theory–EUROCAST 2011
, edited by
R.
Moreno-Díaz
,
F.
Pichler
, and
A.
Quesada-Arencibia
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
601
608
.
45.
A.
Matute
,
L.
Paredes-Madrid
,
G.
Moreno
,
F.
Cárdenas
, and
C. A.
Palacio
,
J. Sens.
2018
,
6561901
.
46.
T.
Supuk
,
A.
Skelin
, and
M.
Cic
,
Sensors
14
,
8235
(
2014
).
47.
D. A.
Yungher
,
M. T.
Wininger
,
J. B.
Barr
,
W.
Craelius
, and
A. J.
Threlkeld
,
Med. Eng. Phys.
33
,
464
(
2011
).
48.
V.
Agostini
and
M.
Knaflitz
,
IEEE Trans. Biomed. Eng.
59
,
219
(
2012
).
49.
E.
Huigen
,
A.
Peper
, and
C. A.
Grimbergen
,
Med. Biol. Eng. Comput.
40
,
332
(
2002
).
50.
A.
Prakash
,
S.
Sharma
, and
N.
Sharma
,
Biomed. Eng. Lett.
9
,
467
(
2019
).
51.
Z. G.
Xiao
and
C.
Menon
,
Sensors
19
,
4557
(
2019
).
52.
C.
Sinderby
,
L.
Lindstrom
, and
A. E.
Grassino
,
J. Appl. Physiol.
79
,
1803
(
1995
).
You do not currently have access to this content.