The article presents a Hall effect magnetometer for use in a desktop Electron Paramagnetic Resonance spectrometer with a permanent magnet system and scanning coils. High accuracy and long-term stability at a small size and low cost are achieved through the use of digital signal processing, sequential data filtering in the time and frequency domains, as well as digital correction of raw data based on calibration information. The exciting current of the Hall sensor has the form of an alternating-sign square wave formed by a high-speed H-bridge powered by a stable direct current. Generation of control signals, time selection of data, and their accumulation are performed using Xilinx Field-Programmable Gate Array Artix-7. MicroBlaze embedded 32-bit processor is used to control the magnetometer and interface with adjacent levels of the control system. Taking into account the individual characteristics of the sensor, including the offset voltage, the nonlinearity of the magnetic sensitivity, and their temperature dependences, is carried out by correcting the data obtained by calculating a polynomial depending on the raw magnitude of the field induction and the temperature of the sensor. The polynomial coefficients are individual for each sensor, are determined once during the calibration process, and are stored in the dedicated Electrically Erasable Programmable Read-Only Memory. The magnetometer has a high resolution of 0.1 µT and an absolute measurement error of not exceeding 6 µT.

2.
R. T.
Weber
,
J. J.
Jiang
, and
D. P.
Barr
,
EMX User’s Manual
(
EPR Division Bruker BioSpin Corp.
,
Billerica, MA
,
1998
).
3.
G. R.
Eaton
,
S. S.
Eaton
,
D. P.
Barr
, and
R. T.
Weber
,
Quantitative EPR
(
Springer
,
2010
).
5.
See https://www.lakeshore.com/docs/default-source/product-downloads/manuals/f41_f71manual.pdf?sfvrsn=b571091a_14 for F41 Single-Axis Teslameter User’s Manual, Lake Shore Cryotronics, Inc.
6.
See https://www.senis.swiss/uploads/pdf/Magnetic-Teslameter-3MH3A-Datasheet-r3-1.pdf for 3MH3A Magnetic Field Digital Teslameter, SENIS AG.
8.
A. I.
Rokeakh
and
M. Yu.
Artyomov
, “
Continuous wave desktop coherent superheterodyne X-band EPR spectrometer
,”
J. Magn. Reson.
338
,
107206
(
2022
).
9.
E.
Ramsden
,
Hall-Effect Sensors: Theory and Applications
(
Elsevier
,
2006
).
10.
L.
Testa
,
A.
Sotgiu
,
C.
Masciovecchio
,
M.
Villani
, and
E.
Chiricozzi
, “
High-performance low-cost Hall probe measuring head
,”
Rev. Sci. Instrum.
68
,
1465
(
1997
).
11.
D. R.
Popovic
,
S.
Dimitrijevic
,
M.
Blagojevic
,
P.
Kejik
,
E.
Schurig
, and
R. S.
Popovic
, “
Three-axis teslameter with integrated Hall probe
,”
IEEE Trans. Instrum. Meas.
56
,
1396
(
2007
).
12.
S.
Lozanova
,
A.
Ivanov
, and
C.
Roumenin
, “
A Hall effect device with enhanced sensitivity
,”
Procedia Eng.
25
,
543
(
2011
).
13.
M.
Oszwaldowski
and
S.
El-Ahmar
, “
Double Hall sensor structure reducing voltage offset
,”
Rev. Sci. Instrum.
88
,
075005
(
2017
).
14.
M. D.
Liston
,
C. E.
Quinn
,
W. E.
Sargeant
, and
G. G.
Scott
, “
A contact modulated amplifier to replace sensitive suspension galvanometers
,”
Rev. Sci. Instrum.
17
,
194
(
1946
).
15.
G. L.
Guthrie
, “
Sensitive ac Hall effect circuit
,”
Rev. Sci. Instrum.
36
,
1177
(
1965
).
16.
L. A.
Wood
, “
The Hall effect with audiofrequency currents
,”
Phys. Rev.
41
,
231
(
1932
).
17.
E. M.
Pell
and
R. L.
Sproull
, “
Sensitive recording alternating-current Hall effect apparatus
,”
Rev. Sci. Instrum.
23
,
548
(
1952
).
18.
P. J. A.
Munter
, “
A low-offset spinning-current Hall plate
,”
Sens. Actuators, A
22
,
743
(
1990
).
19.
C.
Müller-Schwanneke
,
F.
Jost
,
K.
Marx
,
S.
Lindenkreuz
, and
K.
von Klitzing
, “
Offset reduction in silicon Hall sensors
,”
Sens. Actuators, A
81
,
18
(
2000
).
20.
V.
Mosser
,
N.
Matringe
, and
Y.
Haddab
, “
A spinning current circuit for Hall measurements down to the nanotesla range
,”
IEEE Trans. Instrum. Meas.
66
,
637
(
2017
).
21.
Y.
Li
,
M.
Motz
, and
L.
Raghavan
, “
A fast T&H overcurrent detector for a spinning Hall current sensor with ping-pong and chopping techniques
,”
IEEE J. Solid-State Circuits
54
,
1852
(
2019
).
22.
S.
Mo
,
R.
Wei
,
Z.
Zeng
, and
M.
He
, “
A multiple-sensitivity Hall sensor featuring a low-cost temperature compensation circuit
,”
Microelectron. J.
113
,
105067
(
2021
).
23.
H.
Blanchard
,
C.
de Raad Iseli
, and
R. S.
Popovic
, “
Compensation of the temperature-dependent offset drift of a Hall sensor
,”
Sens. Actuators, A
60
,
10
(
1997
).
24.
See
http://sensorspb.ru/price5.doc
for Hall Sensor ПXЭ606118A
.
You do not currently have access to this content.