This paper outlines the use of charge detection mass spectrometry to simultaneously measure the charge and mass of micron-sized particles. In a flow-through instrument, the detection of charge was achieved through charge induction onto cylindrical electrodes that connect to a differential amplifier. Mass was determined by particle acceleration under the influence of an electric field. Particles ranging from 30 to 400 fg (3 to 7 µm diameter) were tested. The detector design can measure particle mass within 10% accuracy for particles up to 620 fg with total charge ranging from 500e to 56 ke. This charge and mass range are expected to be relevant for dust on Mars.

1.
N. C.
Contino
and
M. F.
Jarrold
,
Int. J. Mass Spectrom.
345–347
,
153
(
2013
).
2.
A. G.
Elliott
,
S. I.
Merenbloom
,
S.
Chakrabarty
, and
E. R.
Williams
,
Int. J. Mass Spectrom.
414
,
45
(
2017
).
3.
D. Z.
Keifer
,
T.
Motwani
,
C. M.
Teschke
, and
M. F.
Jarrold
,
J. Am. Soc. Mass Spectrom.
27
,
1028
(
2016
).
4.
S. D.
Fuerstenau
and
W. H.
Benner
,
Rapid Commun. Mass Spectrom.
9
,
1528
(
1995
).
5.
J. C.
Schultz
,
C. A.
Hack
, and
W. H.
Benner
,
J. Am. Soc. Mass Spectrom.
9
,
305
(
1998
).
6.
P. H. W.
Vercoulen
,
R. A.
Roos
,
J. C. M.
Marijnissen
, and
B.
Scarlett
,
J. Aerosol Sci.
22
,
S335
(
1991
).
7.
E. L.
Gustafson
,
H. V.
Murray
,
T.
Caldwell
, and
D. E.
Austin
,
J. Am. Soc. Mass Spectrom.
31
,
2161
(
2020
).
8.
G.
Wilson
and
S.
Fuerstenau
,
Electrostatics
178
,
143
(
2003
).
9.
M. K.
Mazumder
,
D.
Saini
,
A. S.
Bins
,
P. K.
Srirama
,
C.
Calle
, and
C.
Buhie
,
Lunar and Planetary Science Conference
(
KSC-2004-032
), (
2004
).
10.
A. D.
Toigo
and
M. I.
Richardson
,
J. Geophys. Res.
105
,
4109
, (
2000
).
11.
W. M.
Farrell
,
M. L.
Kaiser
,
M. D.
Desch
,
J. G.
Houser
,
S. A.
Cummer
,
D. M.
Wilt
, and
G. A.
Landis
,
J. Geophys. Res.
104
,
3795
, (
1999
).
12.
J.
Merrison
,
J.
Jensen
,
K.
Kinch
,
R.
Mugford
, and
P.
Nørnberg
,
Planet. Space Sci.
52
,
279
(
2004
).
13.
P.
Allred
,
J.
Kim
,
Y.
Song
,
S.-H. W.
Chiang
, and
A. R.
Hawkins
, in
Intermountain Engineering, Technology and Computing (IETC)
(
IEEE
,
2022
), pp.
1
5
.
14.
H.
Shelton
,
C. D.
Hendricks
, and
R. F.
Wuerker
,
J. Appl. Phys.
31
,
1243
(
1960
).
15.
M.
Gamero-Castaño
,
Rev. Sci. Instrum.
78
,
043301
(
2007
).
16.
D. Z.
Keifer
and
M. F.
Jarrold
,
Mass Spectrom. Rev.
36
,
715
(
2017
).
17.
L. W.
Zilch
,
J. T.
Maze
,
J. W.
Smith
,
G. E.
Ewing
, and
M. F.
Jarrold
,
J. Phys. Chem. A
112
,
13352
(
2008
).
18.
Y.
Song
,
J.
Rozsa
,
J. B.
de Magalhaes
,
S.
Smith
,
B.
Karlinsey
,
W.
Kinnison
,
E.
Gustafson
,
D. E.
Austin
,
A. R.
Hawkins
, and
S.-H. W.
Chiang
,
IEEE Trans. Instrum. Meas.
69
,
9398
(
2020
).
19.
Y.
Song
,
W.
Kinnison
,
J.
Rozsa
,
D.
Austin
,
A.
Hawkins
, and
S.-H. W.
Chiang
, in
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2020
), pp.
1
4
.
20.
J.
Rozsa
,
Y.
Song
,
A.
Kerr
,
N.
Debaene
,
D.
Austin
,
S.-H. W.
Chiang
, and
A. R.
Hawkins
,
IEEE Trans. Instrum. Meas.
70
,
1503308
(
2021
).
21.
E. O.
Lebigot
, Python Package (
2010
).
You do not currently have access to this content.