A biaxial stretching device is designed and developed for the real-time structural measurements of polymer films. This device adopts a vertical layout to perform real-time x-ray scattering measurements. It has a maximum stretching ratio of 8 × 8 in two perpendicular directions. Its maximum experimental temperature and stretching rate are 250 °C and 100 mm/s, respectively. The control accuracies of the experimental temperature and stretching rate are ±1 °C and 0.01 mm, respectively. All the parameters related to film biaxial processing, such as stretching speed, stretching ratio, and temperature, can be independently set. The device feasibility is demonstrated via a real-time experiment in a synchrotron radiation beamline. Wide-angle x-ray diffraction, small-angle x-ray scattering, and stress–strain data can be simultaneously obtained during various stretching modes. The proposed device fills the gap between the synchrotron radiation x-ray scattering technique and the biaxial stretching processing of polymer films. This device will play an important role in improving the understanding of the physics behind biaxial polymer processing.

1.
J. R.
Pearson
,
Mechanics of Polymer Processing
(
Springer Science and Business Media
,
1985
).
2.
J. A.
Kornfield
,
G.
Kumaraswamy
, and
A. M.
Issaian
,
Ind. Eng. Chem. Res.
41
(
25
),
6383
6392
(
2002
).
3.
S.
Kimata
,
T.
Sakurai
,
Y.
Nozue
,
T.
Kasahara
,
N.
Yamaguchi
,
T.
Karino
,
M.
Shibayama
, and
J. A.
Kornfield
,
Science
316
(
5827
),
1014
1017
(
2007
).
4.
K.
Cui
,
Z.
Ma
,
N.
Tian
,
F.
Su
,
D.
Liu
, and
L.
Li
,
Chem. Rev.
118
(
4
),
1840
1886
(
2018
).
5.
J.
Sheng
,
W.
Chen
,
K.
Cui
, and
L.
Li
,
Rep. Prog. Phys.
85
,
036601
(
2022
).
6.
Z.
Wang
,
Z.
Ma
, and
L.
Li
,
Macromolecules
49
(
5
),
1505
1517
(
2016
).
7.
X.
Tang
,
W.
Chen
, and
L.
Li
,
Macromolecules
52
(
10
),
3575
3591
(
2019
).
8.
M. T.
Demeuse
,
Biaxial Stretching of Film: Principles and Applications
(
Elsevier
,
2011
).
9.
C.
Nie
,
F.
Peng
,
T.
Xu
,
Y.
Ding
,
J.
Sheng
,
W.
Chen
, and
L.
Li
,
Macromolecules
54
(
21
),
9794
9803
(
2021
).
10.
M.
Zhang
,
E.
Yang
,
J.
Zeng
,
J.
Ji
,
F.
Tian
, and
L.
Li
,
J. Non-Newtonian Fluid Mech.
295
,
104597
(
2021
).
11.
T.
Murashima
,
K.
Hagita
, and
T.
Kawakatsu
,
Macromolecules
54
(
15
),
7210
7225
(
2021
).
12.
C.-C.
Tsai
,
R.-J.
Wu
,
H.-Y.
Cheng
,
S.-C.
Li
,
Y.-Y.
Siao
,
D.-C.
Kong
, and
G.-W.
Jang
,
Polym. Degrad. Stab.
95
(
8
),
1292
1298
(
2010
).
13.
B.
Yohsuke
,
K.
Urayama
,
T.
Takigawa
, and
K.
Ito
,
Soft Matter
7
(
6
),
2632
2638
(
2011
).
14.
M.
Johlitz
and
S.
Diebels
,
Arch. Appl. Mech.
81
(
10
),
1333
1349
(
2011
).
15.
T.-T.
Mai
and
K.
Urayama
,
Macromolecules
54
(
10
),
4792
4801
(
2021
).
16.
Y.
Lin
,
R.
Tyler
,
H.
Sun
,
K.
Shi
, and
D. A.
Schiraldi
,
Polymer
127
,
236
240
(
2017
).
17.
S.
Ouchiar
,
G.
Stoclet
,
C.
Cabaret
,
A.
Addad
, and
V.
Gloaguen
,
Polymer
99
,
358
367
(
2016
).
18.
W. A.
MacDonald
,
J. Mater. Chem.
14
(
1
),
4
10
(
2004
).
19.
M. K.
Hassan
and
M.
Cakmak
,
Polymer
54
(
23
),
6463
6470
(
2013
).
20.
G.
Liang
,
S.
Yang
,
J.
Li
, and
S.
Guo
,
Macromolecules
52
(
18
),
6963
6975
(
2019
).
21.
A. S.
Joshi
,
J. G.
Lawrence
, and
M. R.
Coleman
,
ACS Appl. Polym. Mater.
1
(
7
),
1798
1810
(
2019
).
22.
X.
Zhou
and
M.
Cakmak
,
Polymer
47
(
18
),
6362
6378
(
2006
).
23.
T. D.
Huan
,
S.
Boggs
,
G.
Teyssedre
,
C.
Laurent
,
M.
Cakmak
,
S.
Kumar
, and
R.
Ramprasad
,
Prog. Mater. Sci.
83
,
236
269
(
2016
).
24.
M.
De Meuse
,
Biaxial Stretching of Film
(
Elsevier
,
2011
), pp.
27
35
.
25.
L.-P.
Meng
,
Y.-F.
Lin
,
J.-L.
Xu
,
X.-W.
Chen
,
X.-Y.
Li
,
Q.-L.
Zhang
,
R.
Zhang
,
N.
Tian
, and
L.-B.
Li
,
Chin. J. Polym. Sci.
33
(
5
),
754
762
(
2015
).
26.
W.
Michaeli
,
C.
Hopmann
,
L.
Ederleh
, and
M.
Begemann
,
AIP Conf. Proc.
1353
,
738
(
2011
).
27.
D. J.
Hitt
,
M.
Gilbert
, and
M.
Marfell
,
Polym. Test.
19
(
1
),
27
41
(
2000
).
28.
M.
Cakmak
,
M.
Hassan
,
E.
Unsal
, and
C.
Martins
,
Rev. Sci. Instrum.
83
(
12
),
123901
(
2012
).
29.
M. K.
Hassan
and
M.
Cakmak
,
Macromolecules
48
(
13
),
4657
4668
(
2015
).
30.
D. M.
Collins
,
M.
Mostafavi
,
R. I.
Todd
,
T.
Connolley
, and
A. J.
Wilkinson
,
Acta Mater.
90
,
46
58
(
2015
).
31.
S.
Van Petegem
,
J.
Wagner
,
T.
Panzner
,
M. V.
Upadhyay
,
T. T. T.
Trang
, and
H.
Van Swygenhoven
,
Acta Mater.
105
,
404
416
(
2016
).
32.
T.
Meins
,
K.
Hyun
,
N.
Dingenouts
,
M.
Fotouhi Ardakani
,
B.
Struth
, and
M.
Wilhelm
,
Macromolecules
45
(
1
),
455
472
(
2012
).
33.
Y.
Lin
,
W.
Chen
,
L.
Meng
,
D.
Wang
, and
L.
Li
,
Soft Matter
16
(
15
),
3599
3612
(
2020
).
34.
G.
Matsuba
,
T.
Kanaya
,
M.
Saito
,
K.
Kaji
, and
K.
Nishida
,
Phys. Rev. E
62
(
2
),
R1497
(
2000
).
35.
G.
Kumaraswamy
,
R. K.
Verma
,
J. A.
Kornfield
,
F.
Yeh
, and
B. S.
Hsiao
,
Macromolecules
37
(
24
),
9005
9017
(
2004
).
36.
N.
Dechnarong
,
K.
Kamitani
,
C.-H.
Cheng
,
S.
Masuda
,
S.
Nozaki
,
C.
Nagano
,
Y.
Amamoto
,
K.
Kojio
, and
A.
Takahara
,
Macromolecules
53
(
20
),
8901
8909
(
2020
).
37.
X.
Chen
,
L.
Meng
,
W.
Zhang
,
K.
Ye
,
C.
Xie
,
D.
Wang
,
W.
Chen
,
M.
Nan
,
S.
Wang
, and
L.
Li
,
ACS Appl. Mater. Interfaces
11
(
50
),
47535
47544
(
2019
).
38.
A.
Qaiss
and
M.
Bousmina
,
Polym. Eng. Sci.
51
(
7
),
1347
1353
(
2011
).
You do not currently have access to this content.