We report the first optical Thomson scattering measurements inside a high electron temperature (≳1 keV) and moderate electron density (mid 1016 cm−3) plasma. This diagnostic has been built to provide critical plasma parameters, such as electron temperature and density, for Advanced Research Projects Agency-Energy-supported fusion-energy concepts. It uses an 8 J laser at 532 nm in 1.5 ns to measure the high frequency feature of the Thomson scattering profile at 17 locations along the probe axis. It is able to measure electron density from 5 × 1017 cm−3 to several 1019 cm−3 and electron temperatures from tens of eV to several keV. Here, we describe the design, deployment, and analysis on the sheared flow stabilized Z-pinch machine at Zap Energy named FuZE. The probe beam is aimed at an axial distance of 20 cm from the central electrode and is timed within the temporal envelope of neutron emission. The high temperature and moderate density plasmas generated on FuZE lie in an unconventional regime for Thomson scattering as they are between tokamaks and laser-produced plasmas. We described the analysis considerations in this regime, show that the electron density was below 5 × 1016 cm−3 at all times during these measurements, and present a sample shot where the inferred electron temperature varied from 167 ± 16 eV to 700 ± 85 eV over 1.6 cm.

1.
J. S.
Ross
,
S. H.
Glenzer
,
J. P.
Palastro
,
B. B.
Pollock
,
D.
Price
,
L.
Divol
,
G. R.
Tynan
, and
D. H.
Froula
, “
Observation of relativistic effects in collective Thomson scattering
,”
Phys. Rev. Lett.
104
,
105001
(
2010
).
2.
R. K.
Follett
,
J. A.
Delettrez
,
D. H.
Edgell
,
R. J.
Henchen
,
J.
Katz
,
J. F.
Myatt
, and
D. H.
Froula
, “
Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)
,”
Rev. Sci. Instrum.
87
,
11E401
(
2016
).
3.
J. S.
Ross
,
P.
Datte
,
L.
Divol
,
J.
Galbraith
,
D. H.
Froula
,
S. H.
Glenzer
,
B.
Hatch
,
J.
Katz
,
J.
Kilkenny
,
O.
Landen
,
A. M.
Manuel
,
W.
Molander
,
D. S.
Montgomery
,
J. D.
Moody
,
G.
Swadling
, and
J.
Weaver
, “
Simulated performance of the optical Thomson scattering diagnostic designed for the national ignition facility
,”
Rev. Sci. Instrum.
87
,
11E510
(
2016
).
4.
J. T.
Banasek
,
S. V. R.
Rocco
,
W. M.
Potter
,
T.
Byvank
,
B. R.
Kusse
, and
D. A.
Hammer
, “
Multi-angle multi-pulse time-resolved Thomson scattering on laboratory plasma jets
,”
Rev. Sci. Instrum.
89
,
10C109
(
2018
).
5.
G. F.
Swadling
,
S. V.
Lebedev
,
A. J.
Harvey-Thompson
,
W.
Rozmus
,
G. C.
Burdiak
,
L.
Suttle
,
S.
Patankar
,
R. A.
Smith
,
M.
Bennett
,
G. N.
Hall
,
F.
Suzuki-Vidal
, and
J.
Yuan
, “
Interpenetration, deflection, and stagnation of cylindrically convergent magnetized supersonic tungsten plasma flows
.”
Phys. Rev. Lett.
113
,
035003
(
2014
).
6.
G. F.
Swadling
,
S. V.
Lebedev
,
G. N.
Hall
,
S.
Patankar
,
N. H.
Stewart
,
R. A.
Smith
,
A. J.
Harvey-Thompson
,
G. C.
Burdiak
,
P.
de Grouchy
,
J.
Skidmore
,
L.
Suttle
,
F.
Suzuki-Vidal
,
S. N.
Bland
,
K. H.
Kwek
,
L.
Pickworth
,
M.
Bennett
,
J. D.
Hare
,
W.
Rozmus
, and
J.
Yuan
, “
Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)
,”
Rev. Sci. Instrum.
85
,
11E502
(
2014
).
7.
T.
Byvank
,
J. T.
Banasek
,
W. M.
Potter
,
J. B.
Greenly
,
C. E.
Seyler
, and
B. R.
Kusse
, “
Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation
,”
Phys. Plasmas
24
,
122701
(
2017
).
8.
J. D.
Hare
,
J.
MacDonald
,
S.
Bland
,
J.
Dranczewski
,
J.
Halliday
,
S. V.
Lebedev
,
L.
Suttle
,
E.
Tubman
, and
W.
Rozmus
, “
Two-colour interferometry and Thomson scattering measurements of a plasma gun
,”
Plasma Phys. Controlled Fusion
61
,
085012
(
2019
).
9.
N. J.
Peacock
,
D. C.
Robinson
,
M. J.
Forrest
,
P. D.
Wilcock
, and
V. V.
Sannikov
, “
Measurement of the electron temperature by Thomson scattering in tokamak T3
,”
Nature
224
,
488
490
(
1969
).
10.
A. L.
Milder
,
J.
Katz
,
R.
Boni
,
J. P.
Palastro
,
M.
Sherlock
,
W.
Rozmus
, and
D. H.
Froula
, “
Statistical analysis of non-Maxwellian electron distribution functions measured with angularly resolved Thomson scattering
,”
Phys. Plasmas
28
,
082102
(
2021
).
11.
A. D.
Stepanov
,
U.
Shumlak
,
H. S.
McLean
,
B. A.
Nelson
,
E. L.
Claveau
,
E. G.
Forbes
,
T. R.
Weber
, and
Y.
Zhang
, “
Flow Z-pinch plasma production on the FuZE experiment
,”
Phys. Plasmas
27
,
112503
(
2020
).
12.
D.
Froula
,
S. H.
Glenzer
,
N. C. J.
Luhmann
, and
J.
Sheffield
,
Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques
, 2nd ed. (
Elsevier
,
Amsterdam
,
2011
), p.
520
.
13.
Y.
Zhang
,
U.
Shumlak
,
B. A.
Nelson
,
R. P.
Golingo
,
T. R.
Weber
,
A. D.
Stepanov
,
E. L.
Claveau
,
E. G.
Forbes
,
Z. T.
Draper
,
J. M.
Mitrani
,
H. S.
McLean
,
K. K.
Tummel
,
D. P.
Higginson
, and
C. M.
Cooper
, “
Sustained neutron production from a sheared-flow stabilized Z pinch
,”
Phys. Rev. Lett.
122
,
135001
(
2019
).
14.
U.
Shumlak
, “
Z-pinch fusion
,”
J. Appl. Phys.
127
,
200901
(
2020
).
15.
J. M.
Mitrani
,
D. P.
Higginson
,
Z. T.
Draper
,
J.
Morrell
,
L. A.
Bernstein
,
E. L.
Claveau
,
C. M.
Cooper
,
E. G.
Forbes
,
R. P.
Golingo
,
B. A.
Nelson
,
A. E.
Schmidt
,
A. D.
Stepanov
,
T. R.
Weber
,
Y.
Zhang
,
H. S.
McLean
, and
U.
Shumlak
, “
Measurements of temporally- and spatially-resolved neutron production in a sheared-flow stabilized Z-pinch
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
947
,
162764
(
2019
).
16.
J. T.
Banasek
,
T.
Byvank
,
S. V. R.
Rocco
,
W. M.
Potter
,
B. R.
Kusse
, and
D. A.
Hammer
, “
Time-resolved thomson scattering on laboratory plasma jets
,”
IEEE Trans. Plasma Sci.
46
,
3901
3905
(
2018
).
17.
A. M.
Hansen
,
D.
Turnbull
,
J.
Katz
, and
D. H.
Froula
, “
Mitigation of self-focusing in Thomson scattering experiments
,”
Phys. Plasmas
26
,
103110
(
2019
).
18.
H.
Zhao
,
Z.
Li
,
D.
Yang
,
X.
Li
,
Y.
Chen
,
X.
Jiang
,
Y.
Liu
,
T.
Gong
,
L.
Guo
,
S.
Li
,
Q.
Li
,
F.
Wang
,
S.
Liu
,
J.
Yang
,
S.
Jiang
,
W.
Zheng
,
B.
Zhang
, and
Y.
Ding
, “
Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums
,”
Matter Radiat. Extremes
4
,
055201
(
2019
).
19.
G. F.
Swadling
,
C.
Bruulsema
,
W.
Rozmus
, and
J.
Katz
, “
Quantitative assessment of fitting errors associated with streak camera noise in Thomson scattering data analysis
,”
Rev. Sci. Instrum.
93
,
043503
(
2022
).
You do not currently have access to this content.