The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for “single-shot mode,” the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

1.
M.
Borghesi
 et al., “
Proton imaging detection of transient electromagnetic fields in laser-plasma interactions
,”
Rev. Sci. Instrum.
74
,
1688
1693
(
2003
).
2.
R. A.
Simpson
 et al., “
Demonstration of TNSA proton radiography on the national ignition facility advanced radiographic capability (NIF-ARC) laser
,”
Plasma Phys. Controlled Fusion
63
,
124006
(
2021
).
3.
P.
Patel
 et al., “
Isochoric heating of solid-density matter with an ultrafast proton beam
,”
Phys. Rev. Lett.
91
,
125004
(
2003
).
4.
C.
McGuffey
 et al., “
Focussing protons from a kilojoule laser for intense beam heating using proximal target structures
,”
Sci. Rep.
10
,
9415
(
2020
).
5.
S. C.
Wilks
 et al., “
Energetic proton generation in ultra-intense laser–solid interactions
,”
Phys. Plasmas
8
,
542
549
(
2001
).
6.
J.
Fuchs
 et al., “
Laser-driven proton scaling laws and new paths towards energy increase
,”
Nat. Phys.
2
,
48
54
(
2005
).
7.
K.
Flippo
 et al., “
Omega EP, laser scalings and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime
,”
J. Phys.: Conf. Ser.
244
,
022033
(
2010
).
8.
R. A.
Simpson
 et al., “
Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime
,”
Phys. Plasmas
28
,
013108
(
2021
).
9.
D. S.
Hey
 et al., “
Use of GafChromic film to diagnose laser generated proton beams
,”
Rev. Sci. Instrum.
79
,
053501
(
2008
).
10.
H.
Chen
 et al., “
High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions
,”
Rev. Sci. Instrum.
79
,
10E533
(
2008
).
11.
D.
Mariscal
 et al., “
Calibration of proton dispersion for the nif electron positron proton spectrometer (NEPPS) for short-pulse laser experiments on the NIF ARC
,”
Rev. Sci. Instrum.
89
,
10I145
(
2018
).
12.
G. J.
Williams
 et al., “
Production of relativistic electrons at subrelativistic laser intensities
,”
Phys. Rev. E
101
,
031201
(
2020
).
13.
D.
Mariscal
 et al., “
First demonstration of arc-accelerated proton beams at the national ignition facility
,”
Phys. Plasmas
26
,
043110
(
2019
).
14.
A. G.
MacPhee
 et al., “
Enhanced laser–plasma interactions using non-imaging optical concentrator targets
,”
Optica
7
,
129
130
(
2020
).
15.
J. F.
Ziegler
and
J. P.
Biersack
, “
The stopping and range of ions in matter
,” in
Treatise on Heavy-Ion Science
(
Springer
,
1985
), pp.
93
129
.
16.
S. N.
Chen
 et al., “
Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability
,”
Rev. Sci. Instrum.
87
,
073301
(
2016
).
17.
D. G.
Lowe
, “
Distinctive image features from scale-invariant keypoints
,”
Int. J. Comput. Vision
60
,
91
110
(
2004
).
18.
J.
Schindelin
 et al., “
Fiji: An open-source platform for biological-image analysis
,”
Nat. Methods
9
,
676
682
(
2012
).
19.
M.
Newville
 et al., “
Lmfit: Non-linear least-square minimization and curve-fitting for python
,”
Astrophysics
Source Code Library, ascl–1606, 2016
.
20.
F.
Nürnberg
 et al., “
Radiochromic film imaging spectroscopy of laser-accelerated proton beams
,”
Rev. Sci. Instrum.
80
,
033301
(
2009
).
21.
Y.
Wang
 et al., “
0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity λ = 400 nm second-harmonic beamline
,”
Opt. Lett.
42
,
3828
3831
(
2017
).
22.
E.
Sistrunk
 et al., “
All diode-pumped, high-repetition-rate advanced petawatt laser system (HAPLS)
,” in
CLEO: Science and Innovations
(
Optical Society of America
,
2017
), p.
STh1L
-
2
.
23.
J.
Metzkes
 et al., “
A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra
,”
Rev. Sci. Instrum.
83
,
123301
(
2012
).
24.
N. P.
Dover
 et al., “
Scintillator-based transverse proton beam profiler for laser-plasma ion sources
,”
Rev. Sci. Instrum.
88
,
073304
(
2017
).
25.
T.
Ma
 et al., “
Accelerating the rate of discovery: Toward high-repetition-rate HED science
,”
Plasma Phys. Controlled Fusion
63
,
104003
(
2021
).
26.
S.
Dann
 et al., “
Laser wakefield acceleration with active feedback at 5 Hz
,”
Phys. Rev. Accel. Beams
22
,
041303
(
2019
).
27.
R. J.
Shalloo
 et al., “
Automation and control of laser wakefield accelerators using Bayesian optimization
,”
Nat. Commun.
11
,
6355
6358
(
2020
).
28.
M. J.-E.
Manuel
 et al., “
Intrinsic resolution limits of monolithic organic scintillators for use in rep-rated proton imaging
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
913
,
103
106
(
2019
).
29.
H.
Tang
 et al., “
Scintillator detector characterization for laser-driven proton beam imaging
,”
Rev. Sci. Instrum.
91
,
123304
(
2020
).
30.
R. A.
Simpson
 et al., “
Development of a deep learning based automated data analysis for step-filter x-ray spectrometers in support of high-repetition rate short-pulse laser-driven acceleration experiments
,”
Rev. Sci. Instrum.
92
,
075101
(
2021
).
31.
D. A.
Mariscal
 et al., “
Design of flexible proton beam imaging energy spectrometers (PROBIES)
,”
Plasma Phys. Controlled Fusion
63
,
114003
(
2021
).
32.
B. K.
Spears
 et al., “
Deep learning: A guide for practitioners in the physical sciences
,”
Phys. Plasmas
25
,
080901
(
2018
).
33.
P.
Virtanen
 et al.,
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
34.
M.
Abadi
 et al., “
Tensorflow: A system for large-scale machine learning
,” in
12th USENIX Symposium on Operating Systems Design and Implementation
(
OSDI
,
16), 2016
), pp.
265
283
.
35.
S.
Trummer
 et al., “
Automated repair of laser damage on national ignition facility optics using machine learning
,”
Proc. SPIE
10805
,
108050L
(
2018
).
You do not currently have access to this content.