Aiming to improve the stabilization of unstable swirling turbulent premixed flames, an actively controlled swirler and electrical hardware and control software are developed, implemented, and tested in the present study. Stereoscopic particle image velocimetry is performed to calculate the swirl number and study the flame stabilization. A mixture of methane and air with a mean bulk flow velocity of 5.0 m/s and a fuel–air equivalence ratio of 0.6 is examined. This test condition, along with an original swirler vane angle of 30°, led to the initial anchoring of an unstable premixed flame at the burner exhaust. The developed actuation mechanism allows for changing the swirler vane angle from 30° to 60° and back to 30°. Increasing the vane angle from 30° to 60° increases the swirl number to relatively large values, which leads to the formation of a recirculation zone, a downward velocity along the burner centerline, and, as a result, the stabilization of an M-shaped flame. After the vane angle is reduced to 30°, the swirl number decreases but remains relatively large compared to its original value. As a result, the recirculation zone is present at the end of the actuation process and a V-shaped flame is stabilized. Improving the stabilization of the swirl flames is made possible because of the control apparatus and the method developed in the present study. The apparatus and technique designed and tested in this study facilitate the development of robust tools for improving the stabilization of swirling premixed flames in gas turbine combustors.

1.
S.
Taamallah
,
S. J.
Shanbhogue
, and
A. F.
Ghoniem
, “
Turbulent flame stabilization modes in premixed swirl combustion: Physical mechanism and Karlovitz number-based criterion
,”
Combust. Flame
166
,
19
33
(
2016
).
2.
J. P.
Moeck
,
J.-F.
Bourgouin
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame
,”
Combust. Flame
159
,
2650
2668
(
2012
).
3.
D.
Littlejohn
,
R. K.
Cheng
,
D.
Noble
, and
T.
Lieuwen
, “
Laboratory investigations of low-swirl injectors operating with syngases
,”
Turbo Expo: Power Land Sea, Air
43130
,
1001
1010
(
2008
).
4.
M.
Johnson
,
D.
Littlejohn
,
W.
Nazeer
,
K.
Smith
, and
R.
Cheng
, “
A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines
,”
Proc. Combust. Inst.
30
,
2867
2874
(
2005
).
5.
M.
Saediamiri
,
M.
Birouk
, and
J.
Kozinski
, “
Flame stability limits of low swirl burner–Effect of fuel composition and burner geometry
,”
Fuel
208
,
410
422
(
2017
).
6.
K.-J.
Nogenmyr
,
P.
Petersson
,
X.-S.
Bai
,
C.
Fureby
,
R.
Collin
,
A.
Lantz
,
M.
Linne
, and
M.
Aldén
, “
Structure and stabilization mechanism of a stratified premixed low swirl flame
,”
Proc. Combust. Inst.
33
,
1567
1574
(
2011
).
7.
Q.
An
,
S.
Kheirkhah
,
J.
Bergthorson
,
S.
Yun
,
J.
Hwang
,
W. J.
Lee
,
M. K.
Kim
,
J. H.
Cho
,
H. S.
Kim
, and
P.
Vena
, “
Flame stabilization mechanisms and shape transitions in a 3D printed, hydrogen enriched, methane/air low-swirl burner
,”
Int. J. Hydrogen Energy
46
,
14764
14779
(
2021
).
8.
K.
Manoharan
,
M.
Frederick
,
S.
Clees
,
J.
O’Connor
, and
S.
Hemchandra
, “
A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet
,”
J. Fluid Mech.
884
,
A29
(
2020
).
9.
E.
Karlis
,
Y.
Liu
,
Y.
Hardalupas
, and
A. M.
Taylor
, “
Extinction strain rate suppression of the precessing vortex core in a swirl stabilised combustor and consequences for thermoacoustic oscillations
,”
Combust. Flame
211
,
229
252
(
2020
).
10.
D.
Noh
,
E.
Karlis
,
S.
Navarro-Martinez
,
Y.
Hardalupas
,
A.
Taylor
,
D.
Fredrich
, and
W.
Jones
, “
Azimuthally-driven subharmonic thermoacoustic instabilities in a swirl-stabilised combustor
,”
Proc. Combust. Inst.
37
,
5333
5341
(
2019
).
11.
J.
Blimbaum
,
M.
Zanchetta
,
T.
Akin
,
V.
Acharya
,
J.
O’Connor
,
D.
Noble
, and
T.
Lieuwen
, “
Transverse to longitudinal acoustic coupling processes in annular combustion chambers
,”
Int. J. Spray Combust. Dyn.
4
,
275
297
(
2012
).
12.
A. M.
Steinberg
,
C. M.
Arndt
, and
W.
Meier
, “
Parametric study of vortex structures and their dynamics in swirl-stabilized combustion
,”
Proc. Combust. Inst.
34
,
3117
3125
(
2013
).
13.
L.-Y.
Wang
,
C. K.
Bauer
, and
Ö. L.
Gülder
, “
Soot and flow field in turbulent swirl-stabilized spray flames of Jet A-1 in a model combustor
,”
Proc. Combust. Inst.
37
,
5437
5444
(
2019
).
14.
R.
Ciardiello
,
R. S.
Pathania
,
P. M.
Allison
,
P. M.
de Oliveira
, and
E.
Mastorakos
, “
Ignition probability and lean ignition behavior of a swirled premixed bluff body stabilized annular combustor
,”
J. Eng. Gas Turbines Power
143
,
041024
(
2021
).
15.
G.
Vignat
,
D.
Durox
, and
S.
Candel
, “
The suitability of different swirl number definitions for describing swirl flows: Accurate, common and (over-) simplified formulations
,”
Prog. Energy Combust. Sci.
89
,
100969
(
2022
).
16.
M. S.
Sweeney
,
S.
Hochgreb
,
M. J.
Dunn
, and
R. S.
Barlow
, “
The structure of turbulent stratified and premixed methane/air flames II: Swirling flows
,”
Combust. Flame
159
,
2912
2929
(
2012
).
17.
Y.
Huang
and
V.
Yang
, “
Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor
,”
Proc. Combust. Inst.
30
,
1775
1782
(
2005
).
18.
M.
Stöhr
,
I.
Boxx
,
C.
Carter
, and
W.
Meier
, “
Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor
,”
Proc. Combust. Inst.
33
,
2953
2960
(
2011
).
19.
Q.
An
,
W. Y.
Kwong
,
B. D.
Geraedts
, and
A. M.
Steinberg
, “
Coupled dynamics of lift-off and precessing vortex core formation in swirl flames
,”
Combust. Flame
168
,
228
239
(
2016
).
20.
J. C.
Massey
,
Z. X.
Chen
,
M.
Stöhr
,
W.
Meier
, and
N.
Swaminathan
, “
On the blow-off correlation for swirl-stabilised flames with a precessing vortex core
,”
Combust. Flame
239
,
111741
(
2022
).
21.
D.
Durox
,
J. P.
Moeck
,
J.-F.
Bourgouin
,
P.
Morenton
,
M.
Viallon
,
T.
Schuller
, and
S.
Candel
, “
Flame dynamics of a variable swirl number system and instability control
,”
Combust. Flame
160
,
1729
1742
(
2013
).
22.
S.
Mahesh
,
R.
Gopakumar
,
B.
Rahul
,
A.
Dutta
,
S.
Mondal
, and
S.
Chaudhuri
, “
Instability control by actuating the swirler in a lean premixed combustor
,”
J. Propul. Power
34
,
708
719
(
2018
).
23.
K.
Midgley
,
A.
Spencer
, and
J. J.
McGuirk
, “
Unsteady flow structures in radial swirler fed fuel injectors
,”
ASME Turbo Expo
41669
,
375
384
(
2004
).
24.
P.
Weigand
,
W.
Meier
,
X.
Duan
, and
M.
Aigner
, “
Laser based investigations of thermoacoustic instabilities in a lean premixed gas turbine model combustor
,”
ASME Turbo Expo
42363
,
237
245
(
2006
).
25.
S.
Kheirkhah
and
Ö. L.
Gülder
, “
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
,”
Phys. Fluids
25
,
055107
(
2013
).
26.
S.
Kheirkhah
and
Ö. L.
Gülder
, “
Influence of edge velocity on flame front position and displacement speed in turbulent premixed combustion
,”
Combust. Flame
161
,
2614
2626
(
2014
).
27.
S.
Kheirkhah
,
Ö. L.
Gülder
,
G.
Maurice
,
F.
Halter
, and
I.
Gökalp
, “
On periodic behavior of weakly turbulent premixed flame corrugations
,”
Combust. Flame
168
,
147
165
(
2016
).
28.
S.
Mohammadnejad
,
L.
Saca
, and
S.
Kheirkhah
, “
A new compact active turbulence generator for premixed combustion: Non-reacting flow characteristics
,”
Phys. Fluids
34
,
105102
(
2022
).
29.
S.
Kheirkhah
, “
Experimental study of turbulent premixed combustion in V-shaped flames
,” Ph.D. thesis,
The University of Toronto
,
2016
.
30.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
2018
).
31.
J.
Westerweel
and
F.
Scarano
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
32.
A.
Coghe
,
G.
Solero
, and
G.
Scribano
, “
Recirculation phenomena in a natural gas swirl combustor
,”
Exp. Therm. Fluid Sci.
28
,
709
714
(
2004
).
33.
Y.
Huang
and
V.
Yang
, “
Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: Transition from stable to unstable flame
,”
Combust. Flame
136
,
383
389
(
2004
).
34.
X.
Yang
,
W.
Yang
,
S.
Dong
, and
H.
Tan
, “
Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor
,”
Energy
209
,
118495
(
2020
).
Published under a nonexclusive license by AIP Publishing.
You do not currently have access to this content.