Axial self-inductive displacement sensor can be used in rotor systems to detect the axial displacement of the rotor. The design and analysis of the sensor are mostly based on the traditional ideal model, which ignores the influence of fringing effects and eddy current effects, resulting in significant discrepancies between theoretical analysis and experimental results. To take into account the influence of fringing effects and eddy current effects, this paper proposed the introduction of the fringing factor and complex permeability and then established an improved model. The results show that the prediction of the sensor’s output voltage based on the improved model is in better agreement with the experimental results than the traditional ideal model, and the improved model can analyze the influences of the length of the air gap and excitation frequency on sensitivity. Therefore, the model could provide a significant reference for the design and analysis of the axial self-inductive displacement sensor.

1.
Y.
Zhu
,
K.
Chen
,
K.
Yan
,
P.
Cao
,
Q.
Yuan
, and
J.
Hong
, “
Rotor axial displacement monitoring via radial measuring method using printed bar code
,”
J. Xi’an Jiaotong Univ.
53
(
04
),
1
8
(
2019
)
(in Chinese)
.
2.
A.
Filatov
and
L.
Hawkins
, “
Novel combination 3DOF radial/axial eddy-current position sensor
,”
IEEE Sens. J.
22
(
24
),
23743
23755
(
2022
).
3.
Y.
Tamura
,
H.
Yoshioka
, and
H.
Shinno
, “
Rotary-axial positioning system with giant magnetostrictive element
,”
Procedia CIRP
46
,
315
318
(
2016
).
4.
Y.
Zhu
,
P.
Zhang
,
Q.
Yuan
,
K.
Yan
, and
J.
Hong
, “
Key technologies and development trend of smart bearing
,”
J. Vib. Meas. Diagn.
39
(
03
),
455
462
(
2019
)
(in Chinese).
.
5.
W.
Li
,
J.
Hu
,
Z.
Su
, and
D.
Wang
, “
Analysis and design of axial inductive displacement sensor
,”
Measurement
187
,
110159
(
2022
).
6.
H.
Li
,
S.
Liu
,
W.
Yu
, and
Y.
Fan
, “
Maglev rotor axial displacement detection method using eddy current sensor
,”
Chin. J. Sci. Instrum.
32
(
07
),
1441
1448
(
2011
) (in Chinese).
7.
M.
Sun
,
J.
Zhou
,
B.
Dong
, and
S.
Zheng
, “
Driver circuit improvement of eddy current sensor in displacement measurement of high-speed rotor
,”
IEEE Sens. J.
21
(
6
),
7776
7783
(
2020
).
8.
W.
Li
,
J.
Hu
,
Z.
Su
, and
D.
Wang
, “
Radial displacement detection using sensing coils weakly coupled with magnetic bearing
,”
IEEE Sens. J.
22
(
21
),
20352
20359
(
2022
).
9.
M.
Zong
,
L.
Ba
, and
F.
Wang
, “
Study on novel measuring method for rotor axial displacement with displacement sensor fixed on radial direction in magnetic bearing
,” in
Proceedings of the 2008 International Conference on Electrical Machines and Systems
(
IEEE
,
2008
).
10.
T.
Sillanpää
,
A.
Smirnov
,
P.
Jaatinen
,
J.
Vuojolainen
,
N.
Nevaranta
,
R.
Jastrzebski
, and
O.
Pyrhönen
, “
Three-axis inductive displacement sensor using phase-sensitive digital signal processing for industrial magnetic bearing applications
,”
Actuators
10
(
6
),
115
(
2021
).
11.
K.
Wang
,
L.
Zhang
,
Y.
Le
,
S.
Zheng
,
B.
Han
, and
Y.
Jiang
, “
Optimized differential self-inductance displacement sensor for magnetic bearings: Design, analysis and experiment
,”
IEEE Sens. J.
17
(
14
),
4378
4387
(
2017
).
12.
A.
Bonfitto
,
R.
Gabai
,
A.
Tonoli
,
L. M.
Castellanos
, and
N.
Amati
, “
Resonant inductive displacement sensor for active magnetic bearings
,”
Sens. Actuators, A
287
,
84
92
(
2019
).
13.
Z.
Ren
,
H.
Li
,
X.
Chen
,
W.
Yu
, and
R.
Chen
, “
Impedance modeling of self-inductive displacement sensor considering iron core reluctance and flux leakage
,”
IEEE Sens. J.
22
(
9
),
8583
8595
(
2022
).
14.
S. C.
Chen
,
D. K.
Le
, and
V. S.
Nguyen
, “
Inductive displacement sensors with a notch filter for an active magnetic bearing system
,”
Sensors
14
(
7
),
12640
12657
(
2014
).
15.
H.
Li
,
Z.
Ren
,
R.
Chen
, and
W.
Yu
, “
Influence of structural parameters on the static performance of self-inductive radial displacement sensor
,”
Meas. Sci. Technol.
33
(
12
),
125106
(
2022
).
16.
Z.
Shi
,
Y.
Zhou
,
J.
Zhao
,
Z.
Sun
, and
M.
Cha
, “
A new sensor based on self-inductive measurement of rotor radial and axial displacement
,” in
Proceedings of the National Symposium on Advanced Reactors and Research Reactors
(
China Nuclear Society
,
2006
) (in Chinese).
17.
R. S.
Kasikowski
and
B.
Wiecek
, “
Fringing-effect losses in inductors by thermal modeling and thermographic measurements
,”
IEEE Trans. Power Electron.
36
(
9
),
9772
9786
(
2021
).
18.
H.
Bleuler
,
M.
Cole
,
P.
Keogh
,
R.
Larsonneur
,
E.
Maslen
,
Y.
Okada
,
G.
Schweitzer
, and
A.
Traxler
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
(
Springer Science & Business Media
,
2009
).
19.
S.
Frljić
and
B.
Trkulja
, “
Two-step method for the calculation of eddy current losses in an open-core transformer
,”
IEEE Trans. Magn.
57
(
3
),
6300608
(
2020
).
20.
J.
Muhlethaler
,
J. W.
Kolar
, and
A.
Ecklebe
, “
A novel approach for 3D air gap reluctance calculations
,” in
Proceedings of the 8th International Conference on Power Electronics-ECCE Asia
(
IEEE
,
2011
), pp.
446
452
.
21.
K. N. B.
Abeywickrama
,
T.
Daszczynski
,
Y. V.
Serdyuk
, and
S. M.
Gubanski
, “
Determination of complex permeability of silicon steel for use in high-frequency modeling of power transformers
,”
IEEE Trans. Magn.
44
(
4
),
438
444
(
2008
).
22.
Y.
Le
and
K.
Wang
, “
Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects
,”
IEEE/ASME Trans. Mechatron.
21
(
4
),
2061
2072
(
2016
).
You do not currently have access to this content.