At an estimated cost of $8 billion annually in the United States, revision surgeries to total joint replacements represent a substantial financial burden to the health care system and a tremendous mental and physical burden on patients and their caretakers. Fixation failures, such as implant loosening, wear, and mechanical instability of the poly(methyl methacrylate) (PMMA) cement, which bonds the implant to the bone, are the main causes of long-term implant failure. Early and accurate diagnosis of cement failure is critical for developing novel therapeutic strategies and reducing the high risk of a misjudged revision. Unfortunately, prevailing imaging modalities, notably plain radiographs, struggle to detect the precursors of implant failure and are often interpreted incorrectly. Our prior work has shown that the modification of PMMA bone cement with low concentrations of conductive fillers makes it piezoresistive and therefore self-sensing. When combined with a conductivity imaging modality such as electrical impedance tomography (EIT), it is possible to monitor load transfer across the PMMA using cost-effective, physiologically benign, non-contact, and real-time electrical measurements. Despite the ability of EIT for monitoring load transfer across self-sensing PMMA bone cement, it is unable to accurately characterize failure mechanisms. Overcoming this challenge is critical to the success of this technology in practice. Therefore, we herein expand upon our previous results by integrating machine learning techniques with EIT for cement condition characterization with the goal of establishing the feasibility of even off-the-shelf machine learning algorithms to address this important problem. We survey a wide variety of different machine learning algorithms for application to this problem, including neural networks on voltage readings of an EIT phantom for tracking the spatial position of a sample, specifying defect orientation within a sample, and classifying defect types, including cracks and delaminations. In addition, we explore the utilization of principal component analysis (PCA) for pre-treating impedance signals in each of these problems. Within the tested algorithms, our results show clear advantages of neural networks, support vector machines, and K-nearest neighbor algorithms for interpreting EIT signals. We also show that PCA is an effective addition to machine learning. These preliminary results demonstrate that the combination of smart materials, EIT, and machine learning may be a powerful instrumentation tool for diagnosing the origin and evolution of mechanical failure in joint replacements.

1.
S. M.
Kurtz
,
K. L.
Ong
,
E.
Lau
,
M.
Widmer
,
M.
Maravic
,
E.
Gómez-Barrena
,
M.
de Fátima de Pina
,
V.
Manno
,
M.
Torre
,
W. L.
Walter
et al
, “
International survey of primary and revision total knee replacement
,”
Int. Orthop.
35
(
12
),
1783
1789
(
2011
).
2.
Orthoworld
,
The orthopedic industry annual report
(
2015
).
3.
M.
Bhandari
,
J.
Smith
,
L. E.
Miller
, and
J. E.
Block
, “
Clinical and economic burden of revision knee arthroplasty
,”
Clin. Med. Insights: Arthritis Musculoskeletal Disord.
5
,
89
(
2012
).
4.
S. M.
Kurtz
,
K. L.
Ong
,
J.
Schmier
,
F.
Mowat
,
K.
Saleh
,
E.
Dybvik
,
J.
Kärrholm
,
G.
Garellick
,
L. I.
Havelin
,
O.
Furnes
et al
, “
Future clinical and economic impact of revision total hip and knee arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
89
(
3
),
144
151
(
2007
).
5.
M.
Pitta
,
C. I.
Esposito
,
Z.
Li
,
Y.-y.
Lee
,
T. M.
Wright
, and
D. E.
Padgett
, “
Failure after modern total knee arthroplasty: A prospective study of 18,065 knees
,”
J. Arthroplasty
33
(
2
),
407
414
(
2018
).
6.
S. M.
Kurtz
,
K. L.
Ong
,
E.
Lau
, and
K. J.
Bozic
, “
Impact of the economic downturn on total joint replacement demand in the United States: Updated projections to 2021
,”
J. Bone Jt. Surg.
96
(
8
),
624
630
(
2014
).
7.
C.
Kenney
,
S.
Dick
,
J.
Lea
,
J.
Liu
, and
N. A.
Ebraheim
, “
A systematic review of the causes of failure of revision total hip arthroplasty
,”
J. Orthop.
16
,
393
(
2019
).
8.
S.
Adelaide
, “
Australian orthopaedic association national joint replacement registry (2016)
,” in
Hip, Knee & Shoulder Arthroplasty Annual Report
(
Austaralian Orthopedic Association
,
2016
).
9.
H.
Hempstead
, “
National joint registry for England W, Northern Ireland and the Isle of Man, 14th annual report 2017
,” (
National Joint Registry for England
,
Wales, London
,
2017
).
10.
D.
Nam
,
C. M.
Lawrie
,
R.
Salih
,
C. R.
Nahhas
,
R. L.
Barrack
, and
R. M.
Nunley
, “
Cemented versus cementless total knee arthroplasty of the same modern design: A prospective, randomized trial, the journal of bone and joint surgery
,”
J. Bone Jt. Surg.
101
(
13
),
1185
(
2019
).
11.
C.
Lawrie
,
M.
Schwabe
,
A.
Pierce
,
R.
Nunley
, and
R.
Barrack
, “
The cost of implanting a cemented versus cementless total knee arthroplasty
,”
Bone Jt. Surg. J
101-B
(
7
),
61
63
(
2019
).
12.
J. J.
Jacobs
,
K. A.
Roebuck
,
M.
Archibeck
,
N. J.
Hallab
, and
T. T.
Glant
, “
Osteolysis: Basic science
,”
Clin. Orthop. Relat. Res.
393
,
71
77
(
2001
).
13.
A.
Postler
,
C.
Lützner
,
F.
Beyer
,
E.
Tille
, and
J.
Lützner
, “
Analysis of total knee arthroplasty revision causes
,”
BMC Musculoskeletal Disord.
19
(
1
),
55
(
2018
).
14.
A.
Khlopas
,
M.
Chughtai
,
C.
Cole
,
C.
Gwam
,
S.
Harwin
,
B.
Whited
,
D.
Omiyi
,
J.
Drumm
, and
P.
Bonutti
, “
Unusually high rate of early failure of tibial component in attune total knee arthroplasty system at implant–cement interface
,”
J. Knee Surg.
30
(
05
),
435
439
(
2017
).
15.
H.
Ghaednia
,
X.
Wang
,
S.
Saha
,
Y.
Xu
,
A.
Sharma
, and
R. L.
Jackson
, “
A review of elastic-plastic contact mechanics
,”
Appl. Mech. Rev.
69
,
060804
(
2017
).
16.
H.
Ghaednia
,
S. A.
Pope
,
R. L.
Jackson
, and
D. B.
Marghitu
, “
A comprehensive study of the elasto-plastic contact of a sphere and a flat
,”
Tribol. Int.
93
,
78
90
(
2016
).
17.
P.
Rea
,
H.
Pandit
,
P.
Kyberd
, and
D. W.
Murray
, “
Radiolucency and migration after oxford unicompartmental knee arthroplasty
,”
Orthopedics
30
(
5
),
24
(
2007
).
18.
C.
Torrens
,
S.
Martínez-Díaz
,
A.
Ruiz
,
A.
Gines
, and
E.
Cáceres
, “
Assessment of radiolucent lines in cemented shoulder hemi-arthroplasties: Study of concordance and reproducibility
,”
Int. Orthop.
33
(
1
),
165
169
(
2009
).
19.
H.
Ghaednia
,
C.
Owens
,
R.
Roberts
,
T. N.
Tallman
,
A. J.
Hart
, and
K. M.
Varadarajan
, “
Interfacial load monitoring and failure detection in total joint replacements via piezoresistive bone cement and electrical impedance tomography
,”
Smart Mater. Struct.
29
,
085039
(
2020
).
20.
H.
Ghaednia
,
C. E.
Owens
,
T. N.
Tallman
,
A. J.
Hart
, and
K. M.
Varadarajan
, “
Non-invasive diagnosis of aseptic implant loosening via electrical impedance tomography
,” in
International Society of Technology in Arthroplasty
(
Toronto, CN
,
2019
).
21.
H.
Ghaednia
,
C. E.
Owens
,
R.
Roberts
,
T. N.
Tallman
,
A. J.
Hart
,
K. M.
Varadarajan
, “
Non-invasive diagnosis of failure in cemented joint replacement via piezoresistive bone cement and electrical impedance tomography
,” in
Proceedings of the ORS
(
Phoenix, AZ
,
2020
).
22.
T. N.
Tallman
and
D. J.
Smyl
, “
Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: A review
,”
Smart Mater. Struct.
29
(
12
),
123001
(
2020
).
23.
D.
Smyl
,
M.
Pour-Ghaz
, and
A.
Seppänen
, “
Detection and reconstruction of complex structural cracking patterns with electrical imaging
,”
NDT&E Int.
99
,
123
133
(
2018
).
24.
C.
Wang
,
J.
Lang
, and
H.-X.
Wang
, “
RBF neural network image reconstruction for electrical impedance tomography
,” in
Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Cat. No. 04EX826
(
IEEE
,
2004
Cat. No. 04EX826
), Vol.
4
, pp.
2549
2552
.
25.
T.
Rymarczyk
,
G.
Kłosowski
, and
E.
Kozłowski
, “
A non-destructive system based on electrical tomography and machine learning to analyze the moisture of buildings
,”
Sensors
18
(
7
),
2285
(
2018
).
26.
G.
Kłosowski
and
T.
Rymarczyk
, “
Using neural networks and deep learning algorithms in electrical impedance tomography
,”
Inf. Control Meas. Econ. Environ. Prot.
7
,
99
(
2017
).
27.
T. A.
Khan
and
S. H.
Ling
, “
Review on electrical impedance tomography: Artificial intelligence methods and its applications
,”
Algorithms
12
(
5
),
88
(
2019
).
28.
Z.
Cao
and
L.
Xu
, “
Direct image reconstruction for 3-D electrical resistance tomography by using the factorization method and electrodes on a single plane
,”
IEEE Trans. Instrum. Meas.
62
(
5
),
999
1007
(
2013
).
29.
S. J.
Hamilton
and
A.
Hauptmann
, “
Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks
,”
IEEE Trans. Med. Imaging
37
(
10
),
2367
2377
(
2018
).
30.
J. S.
Lee
and
W. L.
Murphy
, “
Functionalizing calcium phosphate biomaterials with antibacterial silver particles
,”
Adv. Mater.
25
(
8
),
1173
1179
(
2013
).
31.
S.
Martin
and
C. T.
Choi
, “
Electrical impedance tomography: A reconstruction method based on neural networks and particle swarm optimization
,” in
1st Global Conference on Biomedical Engineering and 9th Asian-Pacific Conference on Medical and Biological Engineering
(
Springer
,
2015
), pp.
177
179
.
32.
S.
Martin
and
C. T.
Choi
, “
A post-processing method for three-dimensional electrical impedance tomography
,”
Sci. Rep.
7
(
1
),
7212
7310
(
2017
).
33.
S.
Ren
,
K.
Sun
,
D.
Liu
, and
F.
Dong
, “
A statistical shape-constrained reconstruction framework for electrical impedance tomography
,”
IEEE Trans. Med. Imaging
38
(
10
),
2400
2410
(
2019
).
34.
Z.
Wang
,
S.
Yue
,
K.
Song
,
X.
Liu
, and
H.
Wang
, “
An unsupervised method for evaluating electrical impedance tomography images
,”
IEEE Trans. Instrum. Meas.
67
(
12
),
2796
2803
(
2018
).
35.
Z.
Wei
,
D.
Liu
, and
X.
Chen
, “
Dominant-current deep learning scheme for electrical impedance tomography
,”
IEEE Trans. Biomed. Eng.
66
(
9
),
2546
2555
(
2019
).
36.
T. N.
Tallman
,
A. J.
Hart
, and
K. M.
Varadarajan
, “
Non-invasive diagnosis of aseptic implant loosening via electrical impedance tomography
,” in
Proceedings of the ORS
(
Austin, TX
,
2019
).
37.
T. N.
Tallman
,
S.
Gungor
,
K.
Wang
, and
C. E.
Bakis
, “
Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler
,”
Struct. Health Monit.
14
(
1
),
100
109
(
2015
).
38.
T.
Tallman
,
S.
Gungor
,
K.
Wang
, and
C. E.
Bakis
, “
Tactile imaging and distributed strain sensing in highly flexible carbon nanofiber/polyurethane nanocomposites
,”
Carbon
95
,
485
493
(
2015
).
39.
T.
Tallman
and
J.
Hernandez
, “
The effect of error and regularization norms on strain and damage identification via electrical impedance tomography in piezoresistive nanocomposites
,”
NDT&E Int.
91
,
156
163
(
2017
).
You do not currently have access to this content.