We report on the design and characterization of a compact microwave antenna for atomic and molecular physics experiments. The antenna is comprised of four loop antennas arranged in a cloverleaf shape, allowing for precise adjustment of polarization by tuning the relative phase of the loops. We optimize the antenna for left-circularly polarized microwaves at 3.5 GHz and characterize its near-field performance using ultracold NaCs molecules as a precise quantum sensor. Observing an unusually high Rabi frequency of 2π × 46.1(2) MHz, we extract an electric field amplitude of 33(2) V/cm at 22 mm distance from the antenna. The polarization ellipticity is 2.3(4)°, corresponding to a 24 dB suppression of right-circular polarization. The cloverleaf antenna is planar and provides large optical access, making it highly suitable for quantum control of atoms and molecules and potentially other quantum systems that operate in the microwave regime.

1.
T. K.
Ishii
,
Handbook of Microwave Technology
(
Elsevier
,
1995
).
2.
T.
Ohlsson
and
N.
Bengtsson
,
Microwave Technology and Foods
(
Elsevier
,
2001
).
3.
M.
Golio
and
J.
Golio
,
RF and Microwave Applications and Systems
(
CRC Press
,
2018
).
5.
J. C.
Bardin
,
D. H.
Slichter
, and
D. J.
Reilly
,
IEEE J. Microw.
1
,
403
(
2021
).
6.
A.
Blais
,
R.-S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. A
69
,
062320
(
2004
).
7.
D. D.
Awschalom
,
R.
Hanson
,
J.
Wrachtrup
, and
B. B.
Zhou
,
Nat. Photonics
12
,
516
(
2018
).
9.
H.
Häffner
,
C. F.
Roos
, and
R.
Blatt
,
Phys. Rep.
469
,
155
(
2008
).
10.
C.
Ospelkaus
,
U.
Warring
,
Y.
Colombe
,
K.
Brown
,
J.
Amini
,
D.
Leibfried
, and
D. J.
Wineland
,
Nature
476
,
181
(
2011
).
11.
D.
Aude Craik
,
N.
Linke
,
T.
Harty
,
C.
Ballance
,
D.
Lucas
,
A.
Steane
, and
D.
Allcock
,
Appl. Phys. B
114
,
3
(
2014
).
12.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
,
Rev. Mod. Phys.
87
,
637
(
2015
).
13.
L.
Henriet
,
L.
Beguin
,
A.
Signoles
,
T.
Lahaye
,
A.
Browaeys
,
G.-O.
Reymond
, and
C.
Jurczak
,
Quantum
4
,
327
(
2020
).
14.
L. D.
Carr
,
D.
DeMille
,
R. V.
Krems
, and
J.
Ye
,
New J. Phys.
11
,
055049
(
2009
).
15.
T.
Karman
and
J. M.
Hutson
,
Phys. Rev. Lett.
121
,
163401
(
2018
).
16.
T.
Karman
and
J. M.
Hutson
,
Phys. Rev. A
100
,
052704
(
2019
).
17.
L.
Anderegg
,
S.
Burchesky
,
Y.
Bao
,
S. S.
Yu
,
T.
Karman
,
E.
Chae
,
K.-K.
Ni
,
W.
Ketterle
, and
J. M.
Doyle
,
Science
373
,
779
(
2021
).
18.
A.
Schindewolf
,
R.
Bause
,
X.-Y.
Chen
,
M.
Duda
,
T.
Karman
,
I.
Bloch
, and
X.-Y.
Luo
,
Nature
607
,
677
(
2022
).
19.
N.
Bigagli
,
C.
Warner
,
W.
Yuan
,
S.
Zhang
,
I.
Stevenson
,
T.
Karman
, and
S.
Will
,
Nat. Phys.
19
,
1579
1584
(
2023
).
20.
J.
Lin
,
G.
Chen
,
M.
Jin
,
Z.
Shi
,
F.
Deng
,
W.
Zhang
,
G.
Quéméner
,
T.
Shi
,
S.
Yi
, and
D.
Wang
,
Phys. Rev. X
13
,
031032
(
2023
).
21.
J.-M.
Raimond
,
M.
Brune
, and
S.
Haroche
,
Rev. Mod. Phys.
73
,
565
(
2001
).
22.
A.
Facon
,
E.-K.
Dietsche
,
D.
Grosso
,
S.
Haroche
,
J.-M.
Raimond
,
M.
Brune
, and
S.
Gleyzes
,
Nature
535
,
262
(
2016
).
23.
T. L.
Nguyen
,
J.-M.
Raimond
,
C.
Sayrin
,
R.
Cortinas
,
T.
Cantat-Moltrecht
,
F.
Assemat
,
I.
Dotsenko
,
S.
Gleyzes
,
S.
Haroche
,
G.
Roux
et al
,
Phys. Rev. X
8
,
011032
(
2018
).
24.
S. R.
Cohen
and
J. D.
Thompson
,
PRX Quantum
2
,
030322
(
2021
).
25.
S.
Bize
,
P.
Laurent
,
M.
Abgrall
,
H.
Marion
,
I.
Maksimovic
,
L.
Cacciapuoti
,
J.
Grünert
,
C.
Vian
,
F. P. d.
Santos
,
P.
Rosenbusch
et al
,
J. Phys. B: At., Mol. Opt. Phys.
38
,
S449
(
2005
).
26.
T.
Graham
,
L.
Phuttitarn
,
R.
Chinnarasu
,
Y.
Song
,
C.
Poole
,
K.
Jooya
,
J.
Scott
,
A.
Scott
,
P.
Eichler
, and
M.
Saffman
, “
Midcircuit measurements on a single-species neutral alkali atom quantum processor
,”
Phys. Rev. X
(
to be published
2023
).
28.
U. R.
Kraft
,
IEEE Trans. Antennas Propag.
44
,
515
(
1996
).
29.
J. D.
Kraus
and
R. J.
Marhefka
,
Antennas for All Applications
, 3rd ed. (
McGraw-Hill
,
2021
).
30.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
John Wiley & Sons
,
2015
).
31.
X.-Y.
Chen
,
A.
Schindewolf
,
S.
Eppelt
,
R.
Bause
,
M.
Duda
,
S.
Biswas
,
T.
Karman
,
T.
Hilker
,
I.
Bloch
, and
X.-Y.
Luo
,
Nature
614
,
59
(
2023
).
32.
A.
Signoles
, “
Manipulations cohérentes d’états de Rydberg elliptiques par dynamique Zénon quantique
,”
Ph.D. thesis
,
Université Pierre et Marie Curie-Paris VI
,
2014
.
33.

The handedness is defined as left-handed (right-handed) if the electric field is rotating counterclockwise (clockwise) observed from the point of view of the source.

34.
D. E.
Miller
, “
Studying coherence in ultra-cold atomic gases
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
2007
.
35.

The Antenna Toolbox in MATLAB employs the method of moments (MoM) and the results are crosschecked by running simulations on COMSOL, which uses the finite element method (FEM).

36.
A.
Öttl
,
S.
Ritter
,
M.
Köhl
, and
T.
Esslinger
,
Rev. Sci. Instrum.
77
,
063118
(
2006
).
37.
M.
Boguslawski
, “
All-microwave control of hyperfine states in ultracold spin-1 rubidium
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
2019
.
38.
Y.-G.
Zheng
,
L.
Jiang
,
Z.-H.
Zhu
,
W.-Y.
Zhang
,
Z.-Y.
Zhou
,
B.
Xiao
, and
Z.-S.
Yuan
,
Rev. Sci. Instrum.
93
,
064701
(
2022
).
39.
S.
Borówka
,
U.
Pylypenko
,
M.
Mazelanik
, and
M.
Parniak
, “
Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms
,”
Nat. Photonics
(published online
2023
).
40.
S. W.
Ellingson
,
Electromagnetics
,
2
(
Virginia Tech Publishing
,
2020
).
41.
C.
Warner
,
A. Z.
Lam
,
N.
Bigagli
,
H. C.
Liu
,
I.
Stevenson
, and
S.
Will
,
Phys. Rev. A
104
,
033302
(
2021
).
42.
A. Z.
Lam
,
N.
Bigagli
,
C.
Warner
,
W.
Yuan
,
S.
Zhang
,
E.
Tiemann
,
I.
Stevenson
, and
S.
Will
,
Phys. Rev. Res.
4
,
L022019
(
2022
).
43.
I.
Stevenson
,
A. Z.
Lam
,
N.
Bigagli
,
C.
Warner
,
W.
Yuan
,
S.
Zhang
, and
S.
Will
,
Phys. Rev. Lett.
130
,
113002
(
2023
).
44.
C.
Warner
,
N.
Bigagli
,
A. Z.
Lam
,
W.
Yuan
,
S.
Zhang
,
I.
Stevenson
, and
S.
Will
,
New J. Phys.
25
,
053036
(
2023
).
45.
P. J.
Dagdigian
and
L.
Wharton
,
J. Chem. Phys.
57
,
1487
(
1972
).
46.

For a given phase relation between the electric field components, we determine the Euler angles of the rotational transformation from the lab frame to the microwave frame by requiring the electric field component along the propagation direction of the microwave (or the linear π-polarization component) to be zero in the microwave frame. Then we rotate the electric field components to the microwave frame with this set of Euler angles and calculate the ratio E/E+ to extract the ellipticity. We scan the phase relations and obtain the range of tilt angles and the corresponding ellipticity. This procedure has been used and described in Ref. 18.

47.

We have experimentally confirmed this by driving the |F = 1, mF = 1⟩ to |F = 2, mF = 2⟩ hyperfine transition of Na atoms at large magnetic field, such that the energy spacing is approximately 3.5 GHz. Here F is the total angular momentum and mF its projection on the axis of the magnetic field. This is a σ+ magnetic dipole transition. We have found that we can reach a Rabi frequency of about 2π × 100 kHz and a polarization purity that corresponds to an ellipticity of about 4°.

48.
J. L.
Bohn
,
A. M.
Rey
, and
J.
Ye
,
Science
357
,
1002
(
2017
).
50.
R.
Krems
,
B.
Friedrich
, and
W. C.
Stwalley
,
Cold Molecules: Theory, Experiment, Applications
(
CRC Press
,
2009
).
51.
P. D.
Gregory
,
L. M.
Fernley
,
A. L.
Tao
,
S. L.
Bromley
,
J.
Stepp
,
Z.
Zhang
,
S.
Kotochigova
,
K. R.
Hazzard
, and
S. L.
Cornish
, arXiv:2306.02991 (
2023
).
52.
D.
Bluvstein
,
H.
Levine
,
G.
Semeghini
,
T. T.
Wang
,
S.
Ebadi
,
M.
Kalinowski
,
A.
Keesling
,
N.
Maskara
,
H.
Pichler
,
M.
Greiner
et al
,
Nature
604
,
451
(
2022
).
53.
T.
Graham
,
Y.
Song
,
J.
Scott
,
C.
Poole
,
L.
Phuttitarn
,
K.
Jooya
,
P.
Eichler
,
X.
Jiang
,
A.
Marra
,
B.
Grinkemeyer
et al
,
Nature
604
,
457
(
2022
).
You do not currently have access to this content.