Coaxial peaking capacitor is a key component in high-altitude electromagnetic pulse (EMP) simulators with fast front pulse output. It poses significant technical and engineering challenges in limiting radiation field amplitude and test space. This paper presents the design and testing of a 180 pF, 3 MV coaxial peaking capacitor with improved insulation performance. In the insulation design, the length of the dielectric film is extended to reduce the background electric field on the flashover path. The electric field threshold obtained from image diagnosis is used as a reference. During capacitor testing, the insulation characteristics are diagnosed using both direct and indirect methods. The voltage measured by a D-dot probe, the output waveform of the Marx generator in the primary source, and the radiation field waveform are analyzed to understand the flashover characteristics of the capacitor and to improve the reliability of the test results. The experimental results demonstrate that the peaking capacitor can operate stably at 3.0 MV. If flashover occurring on the dropping edge of the pulse is permitted, the operating voltage can be greater than 3.7 MV without significantly affecting the radiation field waveform. The analysis on the surface flashover morphology of the peaking capacitor reveals that the flashover mainly occurs at the dropping edge of the capacitor's waveform, indicating that the damage to the film is not serious. This research significantly increases the working voltage of coaxial peaking capacitors and contributes to the development of high-altitude EMP simulation technology.

1.
A.
Qiu
,
Application of Pulse Power Technology
(
Shaanxi Science and Technology Press
,
Xi’an
,
2016
).
2.
B.
Zhou
,
B.
Chen
, and
L.
Shi
,
EMP and EMP Protection
(
National Defense Industry Press
,
Beijing
,
2003
).
3.
C.
Gilman
,
S. K.
Lam
,
J. T.
Naff
,
M.
Klatt
, and
K.
Nielsen
, in
Digest of Technical Papers, 12th IEEE International Pulsed Power Conference
(
IEEE
,
1999
), Vol.
2
, pp.
1437
1440
.
4.
V.
Bailey
,
V.
Carboni
,
C.
Eichenberger
,
T.
Naff
,
I.
Smith
,
T.
Warren
,
B.
Whitney
,
D.
Giri
,
D.
Belt
,
D.
Brown
,
A.
Mazuc
, and
T.
Seale
, “
A 6-MV pulser to drive horizontally polarized EMP simulators
,”
IEEE Trans. Plasma Sci.
38
(
10
),
2554
2558
(
2010
).
5.
D.
Belt
,
A.
Mazuc
,
K.
Sebacher
,
V.
Bailey
,
V.
Carboni
,
C.
Eichenberger
,
T.
Naff
,
I.
Smith
,
T.
Warren
, and
B.
Whitney
, in
2011 IEEE Pulsed Power Conference
(
IEEE
,
2011
), pp.
551
554
.
6.
J. T.
Naff
, in
2009 IEEE Pulsed Power Conference
(
IEEE
,
2009
), pp.
322
331
.
7.
W.
Chen
,
X.
He
,
W.
Jia
et al., “
Development of fast rising pulse source for 2.5 MV EMP simulator
,” in
Proceedings of the 14th Nuclear Electronics and Detection Technology
(
Chinese Nuclear Society(CNS)
,
Urumqi
,
2008
), pp.
689
693
.
8.
H.
Schilling
,
J.
Schluter
,
M.
Peters
,
K.
Nielsen
,
J. T.
Naff
, and
H. G.
Hammon
, in
Digest of Technical Papers, Tenth IEEE International Pulsed Power Conference
(
IEEE
,
1995
), Vol.
2
, pp.
1359
1364
.
9.
J. C.
Giles
and
W. D.
Prather
, “
Worldwide high-altitude nuclear electromagnetic pulse simulators
,”
IEEE Trans. Electromagn. Compat.
55
(
3
),
475
483
(
2013
).
10.
A.
Wraight
,
W. D.
Prather
, and
F.
Sabath
, “
Developments in early-time (E1) high-altitude electromagnetic pulse (HEMP) test methods
,”
IEEE Transactions Electromagn. Compat.
55
(
3
),
492
499
(
2013
).
11.
D. V.
Giri
and
W. D.
Prather
, “
High-altitude electromagnetic pulse (HEMP) risetime evolution of technology and standards exclusively for E1 environment
,”
IEEE Trans. Electromagn. Compat.
55
(
3
),
484
491
(
2013
).
12.
M.
Ianoz
, “
A review of HEMP activities in Europe (1970–1995)
,”
IEEE Trans. Electromagn. Compat.
55
(
3
),
412
421
(
2013
).
13.
High-altitude electromagnetic pulse (HEMP) simulator compendium
,” IEC 61000-Q2 4-32 (
2002
).
14.
Description of HEMP environment radiated distrubance
,” IEC 61000-2-9 (
1996
).
15.
Z.-Q.
Chen
,
S.-C.
Ji
,
W.
Jia
,
X.-Q.
Zhu
,
T.-X.
Liang
,
F.
Guo
,
X.-P.
He
, and
W.
Wu
, “
A coaxial film capacitor with a novel structure to enhance its flashover performance
,”
Rev. Sci. Instrum.
90
(
12
),
124709
(
2019
).
16.
J.
Ma
,
Q.
Zhang
,
H.
You
,
Z.
Wu
,
T.
Wen
,
C.
Guo
,
G.
Wang
, and
C.
Gao
, “
Study on insulation characteristics of GIS under combined voltage of DC and lightning impulse
,”
IEEE Trans. Dielectr. Electr. Insul.
24
(
2
),
893
900
(
2017
).
17.
L.
Que
,
Z.
An
,
Y.
Ma
,
D.
Xie
,
F.
Zheng
, and
Y.
Zhang
, “
Improved DC flashover performance of epoxy insulators in SF6 gas by direct fluorination
,”
IEEE Trans. Dielectr. Electr. Insul.
24
(
2
),
1153
1161
(
2017
).
18.
B.
Du
,
P.
Huang
, and
Y.
Xing
, “
Surface charge and flashover characteristics of fluorinated PP under pulse voltage
,”
IET Sci., Meas. Technol.
11
(
1
),
18
24
(
2017
).
19.
Z.
Chen
,
W.
Jia
,
F.
Guo
,
S.
Ji
,
L.
Xie
, and
W.
Wu
, “
Flashover characteristics of polypropylene films in SF6 using nanosecond pulses
,”
IEEE Trans. Dielectr. Electr. Insul.
27
(
1
),
1
9
(
2020
).
20.
Z.
Chen
,
W.
Jia
,
F.
Guo
,
J.
Li
,
W.
Wu
, and
S.
Ji
, “
Variation and saturated phenomena of polypropylene film flashover voltage under different SF6 pressures
,”
IEEE Trans. Plasma Sci.
47
(
10
),
4553
4559
(
2019
).
21.
Z.
Chen
,
W.
Jia
,
L.
Xie
,
F.
Guo
,
C.
Wang
,
X.
He
,
W.
Wu
, and
S.
Ji
, “
Flashover characteristics of laminate structure composed of round parallel-plate electrodes and polymer film dielectrics
,”
High Power Laser Part. Beams
32
(
2
),
025017
(
2020
).
22.
Y.
Wang
,
Z.
Chen
,
W.
Jia
,
W.
Wu
,
L.
Cheng
,
L.
Xie
,
G.
Wu
, and
K.
Mei
, “
Analysis and experimental verification of the peaking capacitor’s flashover process in an EMP simulator
,”
IEEE Access
10
,
84003
84014
(
2022
).
23.
S.
Bindu
,
H. A.
Mangalvedekar
,
A.
Sharma
,
P. C.
Saroj
,
D. P.
Chakravarthy
, and
A. K.
Ray
, “
Development of transfer function model and analysis of the peaking capacitor and switch
,”
IEEE Trans. Plasma Sci.
41
(
8
),
2415
2420
(
2013
).
24.
F.
Guo
,
S.
He
,
W.
Jia
,
J.
Li
,
Z.
Chen
, and
Y.
Xie
, “
Experimental study on breakdown time delay of hundreds of nanoseconds pulse under different du/dt for mm gaps
,”
IEEE Trans. Plasma Sci.
47
(
10
),
4579
4583
(
2019
).
25.
Z.
Chen
,
S.
Ji
,
W.
Jia
,
J.
Tang
,
F.
Guo
,
J.
Li
, and
W.
Chen
, “
Experimental study of the breakdown characteristics of polypropylene films under nanosecond voltage pulses
,”
IEEE Trans. Plasma Sci.
46
(
11
),
4010
4016
(
2018
).
26.
Z.
Chen
,
W.
Jia
,
L.
Cheng
,
M.
Fu
,
L.
Xie
,
F.
Guo
,
W.
Wu
,
H.
Wang
, and
S.
Ji
, “
Prediction of breakdown field strength for large-area and multilayer film dielectrics
,”
IEEE Trans. Dielectr. Electr. Insul.
29
(
2
),
470
477
(
2022
).
27.
I. A.
Metwally
, “
Comparative measurement of surge arrester residual voltages by D-dot probes and dividers
,”
Electr. Power Syst. Res.
81
(
7
),
1274
1282
(
2011
).
28.
C.
Leach
,
S.
Prasad
,
M. I.
Fuks
,
J.
Buchenauer
,
J. W.
McConaha
, and
E.
Schamiloglu
, “
Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap
,”
IEEE Trans. Plasma Sci.
45
(
2
),
282
288
(
2017
).
29.
K.
Schon
,
High Voltage Measurement Techniques
(
Springer
,
2019
).
You do not currently have access to this content.