Currently, the world’s only source of low-energy antiprotons is the AD/ELENA facility located at CERN. To date, all precision measurements on single antiprotons have been conducted at this facility and provide stringent tests of fundamental interactions and their symmetries. However, magnetic field fluctuations from the facility operation limit the precision of upcoming measurements. To overcome this limitation, we have designed the transportable antiproton trap system BASE-STEP to relocate antiprotons to laboratories with a calm magnetic environment. We anticipate that the transportable antiproton trap will facilitate enhanced tests of charge, parity, and time-reversal invariance with antiprotons and provide new experimental possibilities of using transported antiprotons and other accelerator-produced exotic ions. We present here the technical design of the transportable trap system. This includes the transportable superconducting magnet, the cryogenic inlay consisting of the trap stack and detection systems, and the differential pumping section to suppress the residual gas flow into the cryogenic trap chamber.

1.
M.
Dine
and
A.
Kusenko
,
Rev. Mod. Phys.
76
,
1
(
2003
).
2.
G.
Bertone
,
D.
Hooper
, and
J.
Silk
,
Phys. Rep.
405
,
279
(
2005
).
3.
M. S.
Safronova
,
D.
Budker
,
D.
DeMille
et al,
Rev. Mod. Phys.
90
,
025008
(
2018
).
4.
D.
Hanneke
,
S.
Fogwell
, and
G.
Gabrielse
,
Phys. Rev. Lett.
100
,
120801
(
2008
).
5.
X.
Fan
,
T. G.
Myers
,
B. A. D.
Sukra
, and
G.
Gabrielse
,
Phys. Rev. Lett.
130
,
071801
(
2023
).
6.
R. H.
Parker
,
C.
Yu
,
W.
Zhong
et al,
Science
360
,
191
(
2018
).
7.
L.
Morel
,
Z.
Yao
,
P.
Cladé
, and
S.
Guellati-Khélifa
,
Nature
588
,
61
(
2020
).
8.
B.
Abi
,
T.
Albahri
,
S.
Al-Kilani
et al,
Phys. Rev. Lett.
126
,
141801
(
2021
).
9.
D. P.
Aguillard
,
T.
Albahri
,
D.
Allspach
et al, “
Measurement of the positive muon anomalous magnetic moment to 0.20 ppm
,”
arXiv:2308.06230 [hep-ex]
(
2023
).
10.
W. B.
Cairncross
,
D. N.
Gresh
,
M.
Grau
et al,
Phys. Rev. Lett.
119
,
153001
(
2017
).
11.
V.
Andreev
,
D. G.
Ang
,
D.
DeMille
et al,
Nature
562
,
355
(
2018
).
12.
T. S.
Roussy
,
L.
Caldwell
,
T.
Wrigh
et al,
Science
381
,
46
(
2023
).
13.
C.
Abel
,
S.
Afach
,
N. J.
Ayres
et al,
Phys. Rev. Lett.
124
,
081803
(
2020
).
14.
M.
Hori
,
H.
Aghai-Khozani
,
A.
Sóté
et al,
Science
354
,
610
(
2016
).
15.
M.
Ahmadi
,
B. X. R.
Alves
,
C. J.
Baker
et al,
Nature
557
,
71
(
2018
).
16.
M.
Ahmadi
,
B. X. R.
Alves
,
C. J.
Baker
et al,
Nature
578
,
375
(
2020
).
17.
M.
Charlton
,
S.
Eriksson
, and
G. M.
Shore
, “
Testing fundamental physics in antihydrogen experiments
,” arXiv:2002.09348 [hep-ph] (
2020
).
18.
S.
Ulmer
,
C.
Smorra
,
A.
Mooser
et al,
Nature
524
,
196
(
2015
).
19.
C.
Smorra
,
S.
Sellner
,
M. J.
Borchert
et al,
Nature
550
,
371
(
2017
).
20.
M.
Borchert
,
J.
Devlin
,
S.
Erlewein
et al,
Nature
601
,
53
(
2022
).
21.
M.
Hori
and
J.
Walz
,
Prog. Part. Nucl. Phys.
72
,
206
(
2013
).
22.
W.
Bartmann
,
P.
Belochitskii
,
H.
Breuker
et al,
Philos. Trans. R. Soc., A
376
,
20170266
(
2018
).
23.
G.
Schneider
,
A.
Mooser
,
M.
Bohman
et al,
Science
358
,
1081
(
2017
).
24.
R. J.
Hughes
and
M. H.
Holzscheiter
,
Phys. Rev. Lett.
66
,
854
(
1991
).
25.
R.
Bluhm
,
V. A.
Kostelecký
, and
N.
Russell
,
Phys. Rev. D
57
,
3932
(
1998
).
26.
Y.
Ding
,
Symmetry
11
,
1220
(
2019
).
27.
C.
Smorra
,
Y. V.
Stadnik
,
P. E.
Blessing
et al,
Nature
575
,
310
(
2019
).
28.
I.
Bediaga
and
C.
Göbel
,
Prog. Part. Nucl. Phys.
114
,
103808
(
2020
).
29.
J.
Dove
,
B.
Kerns
,
R.
McClellan
et al,
Nature
590
,
561
(
2021
).
30.
S.
Ulmer
, “
BASE annual report 2019
,”
Technical Report
(
CERN
,
Geneva
,
2019
).
31.
C. H.
Tseng
and
G.
Gabrielse
,
Hyperfine Interact.
76
,
381
(
1993
).
32.
33.
N.
Huntemann
,
C.
Sanner
,
B.
Lipphardt
et al,
Phys. Rev. Lett.
116
,
063001
(
2016
).
34.
T.
Bothwell
,
D.
Kedar
,
E.
Oelker
et al,
Metrologia
56
,
065004
(
2019
).
35.
S. M.
Brewer
,
J.-S.
Chen
,
A. M.
Hankin
et al,
Phys. Rev. Lett.
123
,
033201
(
2019
).
36.
Y.
Huang
,
H.
Zhang
,
B.
Zhang
et al,
Phys. Rev. A
102
,
050802
(
2020
).
37.
J.
Grotti
,
S.
Koller
,
S.
Vogt
et al,
Nat. Phys.
14
,
437
(
2018
).
38.
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
et al,
Nat. Photonics
14
,
411
(
2020
).
39.
M.
Wada
and
Y.
Yamazaki
,
Nucl. Instrum. Methods Phys. Res., Sect. B
214
,
196
(
2004
).
40.
N.
Nakatsuka
,
A.
Obertelli
,
H.
de Gersem
et al, Verhandlungen der Deutschen Physikalischen Gesellschaft (
2019
).
41.
T.
Aumann
,
W.
Bartmann
,
O.
Boine-Frankenheim
et al,
Eur. Phys. J. A
58
,
88
(
2022
).
42.
M.
Bohman
,
A.
Mooser
,
G.
Schneider
et al,
J. Mod. Opt.
65
,
568
(
2018
).
43.
M.
Bohman
,
V.
Grunhofer
,
C.
Smorra
et al,
Nature
596
,
514
(
2021
).
44.
C.
Will
,
M.
Bohman
,
T.
Driscoll
et al,
New J. Phys.
24
,
033021
(
2022
).
45.
M.
Niemann
,
T.
Meiners
,
J.
Mielke
et al,
Meas. Sci. Technol.
31
,
035003
(
2019
).
46.
J.
Mielke
,
J.
Pick
,
J. A.
Coenders
et al,
J. Phys. B: At., Mol. Opt. Phys.
54
,
195402
(
2021
).
47.
S.
Rau
,
F.
Heiße
,
F.
Köhler-Langes
et al,
Nature
585
,
43
(
2020
).
48.
E. G.
Myers
,
Phys. Rev. A
98
,
010101
(
2018
).
49.
S.
Afach
,
B.
Buchler
,
D.
Budker
et al,
Nat. Phys.
17
,
1396
(
2021
).
50.
P.
Wcisło
,
P.
Ablewski
,
K.
Beloy
et al,
Sci. Adv.
4
(
12
),
eaau4869
(
2018
).
51.
D.
Budker
,
P. W.
Graham
,
H.
Ramani
et al,
PRX Quantum
3
,
010330
(
2022
).
52.
C.
Smorra
,
K.
Blaum
,
L.
Bojtar
et al,
Eur. Phys. J.: Spec. Top.
224
,
3055
(
2015
).
53.
C.
Smorra
and
A.
Mooser
,
J. Phys.: Conf. Ser.
1412
,
032001
(
2020
).
54.
L. S.
Brown
and
G.
Gabrielse
,
Phys. Rev. A
25
,
2423
(
1982
).
55.
H.
Dehmelt
,
Proc. Natl. Acad. Sci. U. S. A.
83
,
2291
(
1986
).
56.
H.
Nagahama
,
G.
Schneider
,
A.
Mooser
et al,
Rev. Sci. Instrum.
87
,
113305
(
2016
).
57.
J. K.
Thompson
,
S.
Rainville
, and
D. E.
Pritchard
,
Nature
430
,
58
(
2004
).
58.
R. S.
Van Dyck
, Jr
,
D.
Farnham
,
S.
Zafonte
, and
P.
Schwinberg
,
Rev. Sci. Instrum.
70
,
1665
(
1999
).
59.
K.
Kromer
,
C.
Lyu
,
M.
Door
et al,
Eur. Phys. J. A
58
,
202
(
2022
).
60.
G.
Gabrielse
,
L.
Haarsma
, and
S. L.
Rolston
,
Int. J. Mass Spectrom. Ion Processes
88
,
319
(
1989
).
61.
J. A.
Devlin
,
E.
Wursten
,
J. A.
Harrington
et al,
Phys. Rev. Appl.
12
,
044012
(
2019
).
62.
E. A.
Cornell
,
R. M.
Weisskoff
,
K. R.
Boyce
, and
D. E.
Pritchard
,
Phys. Rev. A
41
,
312
(
1990
).
63.
S.
Sturm
,
A.
Wagner
,
B.
Schabinger
, and
K.
Blaum
,
Phys. Rev. Lett.
107
,
143003
(
2011
).
64.
G.
Gabrielse
,
A.
Khabbaz
,
D. S.
Hall
et al,
Phys. Rev. Lett.
82
,
3198
(
1999
).
65.
E. A.
Cornell
,
R. M.
Weisskoff
,
K. R.
Boyce
et al,
Phys. Rev. Lett.
63
,
1674
(
1989
).
66.
M. J.
Borchert
, “
Challenging the Standard Model by high precision comparisons of the fundamental properties of antiprotons and protons
,” Ph.D. thesis (
Gottfried Wilhelm Leibniz Universität Hannover
,
2021
).
67.
S.
Ulmer
,
K.
Blaum
,
H.
Kracke
et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
705
,
55
(
2013
).
68.
J.
Ketter
,
T.
Eronen
,
M.
Höcker
et al,
Int. J. Mass Spectrom.
358
,
1
(
2014
).
69.
R. X.
Schüssler
,
H.
Bekker
,
M.
Braß
et al,
Nature
581
,
42
(
2020
).
70.
F.
Heiße
,
F.
Köhler-Langes
,
S.
Rau
et al,
Phys. Rev. Lett.
119
,
033001
(
2017
).
71.
E. G.
Myers
,
Int. J. Mass Spectrom.
349-350
,
107
(
2013
), 100 years of Mass Spectrometry.
72.
W.
Riley
,
Handbook of Frequency Stability Analysis
(
National Institute of Standards and Technology
,
Boulder, CO
,
1995
).
73.
T.
Liu
,
A.
Schnabel
,
J.
Voigt
et al,
Rev. Sci. Instrum.
92
,
024709
(
2021
).
74.
J.
DiSciacca
,
M.
Marshall
,
K.
Marable
,
ATRAP Collaboration
et al,
Phys. Rev. Lett.
110
,
130801
(
2013
).
75.
D.
Barna
,
W.
Bartmann
,
M.
Fraser
, and
R.
Ostojić
, in
Proceedings of the 6th International Particle Accelerator Conference (IPAC’15)
,
Richmond, VA, USA
,
3–8 May 2015
, http://www.jacow.org, pp.
382
384
.
76.
C.
Smorra
,
S.
Ulmer
,
J.
Walz
et al, “
Technical design report of BASE-STEP
,”
Technical Report
(
CERN
,
2021
).
77.
A.
Mooser
,
S.
Ulmer
,
K.
Blaum
et al,
Nature
509
,
596
(
2014
).
78.
B. M.
Latacz
,
B. P.
Arndt
,
J. A.
Devlin
et al, “
Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage
,”
Rev. Sci. Instrum.
94
,
103310
(
2023
).
79.
G.
Gabrielse
,
X.
Fei
,
L. A.
Orozco
et al,
Phys. Rev. Lett.
63
,
1360
(
1989
).
81.
C.
Smorra
,
A.
Mooser
,
K.
Franke
et al,
Int. J. Mass Spectrom.
389
,
10
(
2015
).
82.
M.
Block
,
D.
Ackermann
,
D.
Beck
et al,
Eur. Phys. J. A
25
,
49
(
2005
).
83.
84.
M.
Mukherjee
,
D.
Beck
,
K.
Blaum
et al,
Eur. Phys. J. A
35
,
1
(
2008
).
85.
A.
Hamaker
,
M.
Brodeur
,
J. M.
Kelly
et al,
Int. J. Mass Spectrom.
404
,
14
(
2016
).
86.
G.
Bollen
,
Int. J. Mass Spectrom.
299
,
131
(
2011
).
87.
J. R.
Danielson
and
C. M.
Surko
,
Phys. Plasmas
13
,
055706
(
2006
).
88.
S.
Sellner
,
M.
Besirli
,
M.
Bohman
et al,
New J. Phys.
19
,
083023
(
2017
).
89.
C.
Will
, “
Sympathetic cooling of trapped ions coupled via image currents: simulation and measurement
,”
Ph.D. thesis
,
Heidelberg University
,
2023
.
90.
M.
Wiesinger
, “
Sympathetic cooling of a single individually-trapped proton in a cryogenic Penning trap
,”
Ph.D. thesis
,
Heidelberg University
,
2023
.
91.
A.
Gutierrez
,
M. D.
Ashkezari
,
M.
Baquero-Ruiz
et al,
Hyperfine Interact.
235
,
21
(
2015
).
92.
M.
Ahmadi
,
B. X. R.
Alves
,
C. J.
Baker
et al,
ALPHA Collaboration
,
Phys. Rev. Lett.
120
,
025001
(
2018
).
93.
P.
Micke
,
J.
Stark
,
S. A.
King
et al,
Rev. Sci. Instrum.
90
,
065104
(
2019
).
94.
X.
Fei
, “
Trapping low energy antiprotons in an ion trap
,” Ph.D. thesis (
Harvard University, Department of Physics
,
1990
).
95.
P. K.
Naik
,
Vacuum: Science, Technology and Applications
(
CRC Press
,
2018
).
96.
B.
Freeman
,
Y.
Yampolskii
, and
I.
Pinnau
,
Materials Science of Membranes for Gas and Vapor Separation
(
John Wiley & Sons
,
2006
).
97.
A. F.
Ismail
,
K. C.
Khulbe
, and
T.
Matsuura
,
Switz. Springer
10
,
978
(
2015
).
98.
P.
Micke
,
P.
Beiersdorfer
,
G. V.
Brown
et al,
Rev. Sci. Instrum.
89
,
063109
(
2018
).
99.
S.
Sturm
,
I.
Arapoglou
,
A.
Egl
et al,
Eur. Phys. J.: Spec. Top.
227
,
1425
(
2019
).
100.
A.
Derevianko
and
M.
Pospelov
,
Nat. Phys.
10
,
933
(
2014
).
You do not currently have access to this content.