As the number of qubits in quantum computing increases, the scalability of existing qubit circuit structures and control systems may become insufficient for large-scale expansion and high-fidelity control. To address this challenge, we propose a behavioral-level model of a superconducting qubit and its control electronics, followed by a co-simulation to evaluate their performance. In this paper, we present the modeling process, simulation procedure, and resulting design specifications for the qubit control system. Our co-simulation approach utilizes MATLAB and Simulink, enabling us to derive critical circuit design specifications, such as the required Digital-to-Analog Converter (DAC) resolution, which should be 8 bits or higher, to achieve high-fidelity control. By taking into account factors such as DAC sampling rates, integral and differential nonlinearities, and filter characteristics, we optimize the control system for efficient and accurate qubit manipulation. Our model and simulation approach offer a promising solution to the scalability challenges in quantum computing, providing valuable insights for the design of large-scale superconducting quantum computing systems.

1.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information: 10th Anniversary Edition
(
Cambridge University Press
,
2010
).
2.
J.
Clarke
and
F. K.
Wilhelm
, “
Superconducting quantum bits
,”
Nature
453
,
1031
1042
(
2008
).
3.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
4.
Y.
Wu
,
W.-S.
Bao
,
S.
Cao
,
F.
Chen
,
M.-C.
Chen
,
X.
Chen
,
T.-H.
Chung
,
H.
Deng
,
Y.
Du
,
D.
Fan
,
M.
Gong
,
C.
Guo
,
C.
Guo
,
S.
Guo
,
L.
Han
,
L.
Hong
,
H.-L.
Huang
,
Y.-H.
Huo
,
L.
Li
,
N.
Li
,
S.
Li
,
Y.
Li
,
F.
Liang
,
C.
Lin
,
J.
Lin
,
H.
Qian
,
D.
Qiao
,
H.
Rong
,
H.
Su
,
L.
Sun
,
L.
Wang
,
S.
Wang
,
D.
Wu
,
Y. U.
Xu
,
K.
Yan
,
W.
Yang
,
Y.
Yang
,
Y.
Ye
,
J.
Yin
,
C.
Ying
,
J.
Yu
,
C.
Zha
,
C.
Zhang
,
H.
Zhang
,
K.
Zhang
,
Y.
Zhang
,
H.
Zhao
,
Y.
Zhao
,
L.
Zhou
,
Q.
Zhu
,
C.-Y.
Lu
,
C.-Z.
Peng
,
X.
Zhu
, and
J.-W.
Pan
, “
Strong quantum computational advantage using a superconducting quantum processor
,”
Phys. Rev. Lett.
127
(
18
),
180501
(
2021
).
5.
R.
Acharya
,
I.
Aleiner
,
R.
Allen
,
T. I.
Andersen
,
M.
Ansmann
,
F.
Arute
,
K.
Arya
,
A.
Asfaw
,
J.
Atalaya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
J.
Basso
,
A.
Bengtsson
,
S.
Boixo
,
G.
Bortoli
,
A.
Bourassa
,
J.
Bovaird
,
L.
Brill
,
M.
Broughton
,
B. B.
Buckley
,
D. A.
Buell
,
T.
Burger
,
B.
Burkett
,
N.
Bushnell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
J.
Cogan
,
R.
Collins
,
P.
Conner
,
W.
Courtney
,
A. L.
Crook
,
B.
Curtin
,
D. M.
Debroy
,
A.
Del Toro Barba
,
S.
Demura
,
A.
Dunsworth
,
D.
Eppens
,
C.
Erickson
,
L.
Faoro
,
E.
Farhi
,
R.
Fatemi
,
L.
Flores Burgos
,
E.
Forati
,
A. G.
Fowler
,
B.
Foxen
,
W.
Giang
,
C.
Gidney
,
D.
Gilboa
,
M.
Giustina
,
A.
Grajales Dau
,
J. A.
Gross
,
S.
Habegger
,
M. C.
Hamilton
,
M. P.
Harrigan
,
S. D.
Harrington
,
O.
Higgott
,
J.
Hilton
,
M.
Hoffmann
,
S.
Hong
,
T.
Huang
,
A.
Huff
,
W. J.
Huggins
,
L. B.
Ioffe
,
S. V.
Isakov
,
J.
Iveland
,
E.
Jeffrey
,
Z.
Jiang
,
C.
Jones
,
P.
Juhas
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
T.
Khattar
,
M.
Khezri
,
M.
Kieferová
,
S.
Kim
,
A.
Kitaev
,
P. V.
Klimov
,
A. R.
Klots
,
A. N.
Korotkov
,
F.
Kostritsa
,
J. M.
Kreikebaum
,
D.
Landhuis
,
P.
Laptev
,
K. M.
Lau
,
L.
Laws
,
J.
Lee
,
K.
Lee
,
B. J.
Lester
,
A.
Lill
,
W.
Liu
,
A.
Locharla
,
E.
Lucero
,
F. D.
Malone
,
J.
Marshall
,
O.
Martin
,
J. R.
McClean
,
T.
McCourt
,
M.
McEwen
,
A.
Megrant
,
B.
Meurer Costa
,
X.
Mi
,
K. C.
Miao
,
M.
Mohseni
,
S.
Montazeri
,
A.
Morvan
,
E.
Mount
,
W.
Mruczkiewicz
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
A.
Nersisyan
,
H.
Neven
,
M.
Newman
,
J. H.
Ng
,
A.
Nguyen
,
M.
Nguyen
,
M. Y.
Niu
,
T. E.
O’Brien
,
A.
Opremcak
,
J.
Platt
,
A.
Petukhov
,
R.
Potter
,
L. P.
Pryadko
,
C.
Quintana
,
P.
Roushan
,
N. C.
Rubin
,
N.
Saei
,
D.
Sank
,
K.
Sankaragomathi
,
K. J.
Satzinger
,
H. F.
Schurkus
,
C.
Schuster
,
M. J.
Shearn
,
A.
Shorter
,
V.
Shvarts
,
J.
Skruzny
,
V.
Smelyanskiy
,
W. C.
Smith
,
G.
Sterling
,
D.
Strain
,
M.
Szalay
,
A.
Torres
,
G.
Vidal
,
B.
Villalonga
,
C.
Vollgraff Heidweiller
,
T.
White
,
C.
Xing
,
Z. J.
Yao
,
P.
Yeh
,
J.
Yoo
,
G.
Young
,
A.
Zalcman
,
Y.
Zhang
, and
N.
Zhu
, “
Suppressing quantum errors by scaling a surface code logical qubit
,”
Nature
614
,
676
681
(
2023
).
6.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
(
8
),
1760
1772
(
2012
).
7.
Y.
Yang
,
Z.
Shen
,
X.
Zhu
,
Z.
Wang
,
G.
Zhang
,
J.
Zhou
,
X.
Jiang
,
C.
Deng
, and
S.
Liu
, “
FPGA-based electronic system for the control and readout of superconducting quantum processors
,”
Rev. Sci. Instrum.
93
(
7
),
074701
(
2022
).
8.
J. V.
Dijk
,
A. I.
Vladimirescu
,
M.
Babaie
,
E.
Charbon
, and
F.
Sebastiano
, “
A co-design methodology for scalable quantum processors and their classical electronic interface
,” in
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)
(
IEEE
,
2018
), pp.
573
576
.
9.
S.
Gustavsson
,
O.
Zwier
,
J.
Bylander
,
F.
Yan
,
F.
Yoshihara
,
Y.
Nakamura
,
T. P.
Orlando
, and
W. D.
Oliver
, “
Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions
,”
Phys. Rev. Lett.
110
(
4
),
040502
(
2013
).
10.
S.
Sheldon
,
E.
Magesan
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Procedure for systematically tuning up cross-talk in the cross-resonance gate
,”
Phys. Rev. A
93
(
6
),
060302
(
2016
).
11.
S.
Li
,
A. D.
Castellano
,
S.
Wang
et al, “
Realisation of high-fidelity nonadiabatic CZ gates with superconducting qubits
,”
Npj Quantum Inf.
5
(
1
),
84
(
2019
).
12.
Y.
Xu
,
J.
Chu
,
J.
Yuan
,
J.
Qiu
,
Y.
Zhou
,
L.
Zhang
,
X.
Tan
,
Y.
Yu
,
S.
Liu
,
J.
Li
,
F.
Yan
, and
D.
Yu
, “
High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits
,”
Phys. Rev. Lett.
125
(
24
),
240503
(
2020
).
13.
X.
Li
,
T.
Cai
,
H.
Yan
,
Z.
Wang
,
X.
Pan
,
Y.
Ma
,
W.
Cai
,
J.
Han
,
Z.
Hua
,
X.
Han
,
Y.
Wu
,
H.
Zhang
,
H.
Wang
,
Y.
Song
,
L.
Duan
, and
L.
Sun
, “
Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit
,”
Phys. Rev. Appl.
14
(
2
),
024070
(
2020
).
You do not currently have access to this content.