Pulsed x-rays are crucial for various applications such as radiography, biological effects, and the system-generated electromagnetic pulse effect. X rays with a higher dose rate and a higher total dose can generate more significant radiation effects and more effective radiography. However, most pulsed sub-100 keV x-ray systems with high dose rates operate in the single pulse mode with limited total dose, and most repetitive pulsed x-ray systems have a low dose rate. This paper develops a compact high-current repetitive pulsed x-ray system with a low-impedance diode to generate high dose rate pulsed x-rays with an average energy below 100 keV. A diode with a double-ring cathode is designed and tested to produce uniform pulsed x-rays. In order to investigate the x-ray intensity and the pulse number of repetitions for different anode thicknesses, five typical thicknesses are tested. The experimental results show that this system can operate stably at a repetitive rate of 0.2 Hz with a peak voltage of about 200 kV and a peak current of about 100 kA. The dose rate is about 2.4 × 105 Gy(LiF)/s, and the average x-ray energy is about 55 keV with the 40 µm thick tantalum anode. The x-ray uniformity is better than 2:1 over the measuring plane.

1.
R.
Menon
,
A.
Roy
,
S.
Mitra
,
A.
Sharma
,
J.
Mondal
,
K. C.
Mittal
,
K. V.
Nagesh
, and
D. P.
Chakravarthy
, “
Generation and dose distribution measurement of flash x-ray in KALI-5000 system
,”
Rev. Sci. Instrum.
79
(
10
),
103301
(
2008
).
2.
R.
Menon
,
S.
Mitra
,
A. S.
Patel
,
R.
Kumar
,
G.
Singh
,
K.
Senthil
,
R.
Kumar
,
T. S.
Kolge
,
A.
Roy
,
S.
Acharya
,
D.
Biswas
, and
A.
Sharma
, “
Development of cable fed flash X-ray (FXR) system
,”
Rev. Sci. Instrum.
88
(
8
),
083307
(
2017
).
3.
R.
Labarbe
,
L.
Hotoiu
,
J.
Barbier
, and
V.
Favaudon
, “
A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect
,”
Radiother. Oncol.
153
,
303
310
(
2020
).
4.
H.
Zhu
,
D.
Xie
,
Y.
Wang
,
R.
Huang
,
X.
Chen
,
Y.
Yang
,
B.
Wang
,
Y.
Peng
,
J.
Wang
,
D.
Xiao
,
D.
Wu
,
C.
Qian
, and
X.
Deng
, “
Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies
,”
Clin. Transl. Radiat. Oncol.
38
,
138
146
(
2023
).
5.
G.
Zhou
, “
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues
,”
Radiat. Med. Prot.
1
(
1
),
35
40
(
2020
).
6.
P.
Montay-Gruel
,
A.
Bouchet
,
M.
Jaccard
,
D.
Patin
,
R.
Serduc
,
W.
Aim
,
K.
Petersson
,
B.
Petit
,
C.
Bailat
,
J.
Bourhis
,
E.
Bräuer-Krisch
, and
M. C.
Vozenin
, “
X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice
,”
Radiother. Oncol.
129
(
3
),
582
588
(
2018
).
7.
D. F.
Higgins
,
K. S. H.
Lee
, and
L.
Marin
, “
System-generated EMP
,”
IEEE Trans. Antennas Propag.
26
(
1
),
14
22
(
1978
).
8.
B. H.
Failor
,
J. C.
Riordan
,
J. C.
Rodriguez
,
A.
Verma
, and
D. Y.
Lojewski
, “
Proof-of-principle time-resolved bremsstrahlung spectral measurement for intense, low-endpoint (<300 keV) pulsed sources
,”
J. Instrum.
4
(
03
),
P03007
(
2009
).
9.
M.
Ribiere
,
F. d. G.
de Dortan
,
R.
Delaunay
,
D.
Aubert
,
T.
Gouriou
,
R.
Maisonny
, and
T.
d’Almeida
, “
Quantitative study of pulsed X-ray-induced electromagnetic response in coaxial cables
,”
IEEE Trans. Nucl. Sci.
67
(
7
),
1722
1731
(
2020
).
10.
K. D.
Ware
,
R. L.
Gullickson
,
J. M.
Pierre
,
R. F.
Schneider
, and
I. M.
Vitkovitsky
, “
Development of affordable technologies for large X-ray simulators
,”
IEEE Trans. Plasma Sci.
28
(
5
),
1397
1404
(
2000
).
11.
R.
Menon K
,
A. S.
Patel
,
K.
Senthil
,
A.
Basak
,
R.
Kumar
,
R.
Chandra
,
B.
Dhabekar
,
A. K.
Singh
,
S.
Mitra
,
A.
Roy
,
K. D.
Joshi
, and
A.
Sharma
, “
Characterization of flash X-ray source from a Marx-based pulse power system
,”
IEEE Trans. Plasma Sci.
49
(
8
),
2359
2363
(
2021
).
12.
A.
Mazal
,
Y.
Prezado
,
C.
Ares
,
L.
de Marzi
,
A.
Patriarca
,
R.
Miralbell
, and
V.
Favaudon
, “
FLASH and minibeams in radiation therapy: The effect of microstructures on time and space and their potential application to protontherapy
,”
Br. J. Radiol.
93
(
1107
),
20190807
(
2020
).
13.
J.
Jain
,
H.
Araya
,
J.
Moreno
,
S.
Davis
,
R.
Andaur
,
B.
Bora
,
C.
Pavez
,
K.
Marcelain
, and
L.
Soto
, “
Hyper-radiosensitivity in tumor cells following exposure to low dose pulsed x-rays emitted from a kilojoule plasma focus device
,”
J. Appl. Phys.
130
(
16
),
164902
(
2021
).
14.
J.
Jain
,
J.
Moreno
,
S.
Davis
,
B.
Bora
,
C.
Pavez
,
G.
Avaria
, and
L.
Soto
, “
Experimental evidence of more than one ions acceleration mechanisms in plasma focus device: Observations and interpretations
,”
Phys. Plasmas
26
(
10
),
103105
(
2019
).
15.
A. A.
Komarskiy
,
S. R.
Korzhenevskiy
,
A. V.
Ponomarev
, and
N. A.
Komarov
, “
Pulsed X-ray source with the pulse duration of 50 ns and the peak power of 70 MW for capturing moving objects
,”
J. X-Ray Sci. Technol.
29
(
4
),
567
576
(
2021
).
16.
X.
Ma
,
J.
Deng
,
H.
Liu
,
J.
Yuan
,
J.
Liu
,
B.
Wei
,
Y.
Qing
,
W.
Han
,
L.
Wang
,
P.
Jiang
, and
H.
Li
, “
Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches
,”
Rev. Sci. Instrum.
85
(
9
),
093307
(
2014
).
17.
L.
Quan
,
J.
Tu
,
Y.
Fan
,
Y.
Liu
,
Y.
Zhang
,
J.
Zhou
,
S.
Liu
,
Y.
Ma
,
J.
Zhang
, and
D.
Li
, “
Development of a sub-nanosecond rep-rate pulse hard X-ray generator
,”
High Power Laser Part. Beams
19
(
6
),
1049
1052
(
2007
).
18.
L.
Quan
,
Y.
Fan
,
J.
Tu
,
Y.
Zhang
,
L.
Miao
,
C.
Su
,
X.
Ouyang
,
S.
Liu
,
L.
Chen
,
X.
Yu
,
X.
Xiong
, and
X.
Pan
, “
Development and application of sub-nanosecond pulse-repeatable hard X-ray source
,”
At. Energy Sci. Technol.
47
(
7
),
1229
1233
(
2013
).
19.
D. P.
Murphy
,
B. V.
Weber
,
S. B.
Swanekamp
,
R. J.
Commisso
,
R. J.
Allen
,
J. R.
Goyer
,
J. C.
Riordan
, and
J. S.
Levine
, “
High-current reflex triode research
,” in
18th IEEE International Pulsed Power Conference, Chicago, IL
(
IEEE
,
2011
), pp.
1459
1464
.
20.
B. V.
Weber
,
R. J.
Commisso
,
G.
Cooperstein
,
D. D.
Hinshelwood
,
D.
Mosher
,
D. P.
Murphy
,
S. J.
Stephanakis
, and
S. B.
Swanekamp
, “
Reflex triode X-tay source research on Gamble II
,” in
16th IEEE International Pulsed Power Conference, New Mexico, Albuquerque
(
IEEE
,
2007
), pp.
1417
1422
.
21.
D.
Lai
,
M.
Qiu
,
Q.
Xu
,
Z.
Su
,
M.
Li
,
S.
Ren
, and
Z.
Huang
, “
A two-stage series diode for intense large-area moderate pulsed X rays production
,”
Rev. Sci. Instrum.
88
(
1
),
013506
(
2017
).
22.
D.
Lai
,
Q.
Xu
,
M.
Qiu
,
F.
Sun
,
X.
Jiang
,
M.
Li
,
H.
Jiang
,
Z.
Wang
,
H.
Yang
, and
J.
Wang
, “
Characteristics of the cylindrical reflex triode driven by a four-stage linear transformer driver
,”
Rev. Sci. Instrum.
93
(
10
),
103302
(
2022
).
23.
V.
Rostov
,
I.
Pegel
,
G.
Mesyats
,
S.
Korovin
,
V.
Landl
, and
A.
Gunin
, “
Experimental studies of long-lifetime cold cathodes for high-power microwave oscillators
,”
IEEE. Trans. Plasma. Sci.
28
(
3
),
537
541
(
2000
).
24.
See http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_2/4_2_1.html X-Ray Absorption Edges, Characteristic X-Ray Lines and Fluorescence Yields Tables of Physical and Chemical Constants, Sec. 4.2.1, National Physical Laboratory.
25.
D.
Lai
,
M.
Qiu
,
Q.
Xu
, and
Z.
Huang
, “
Space-charge-limited currents for cathodes with electric field enhanced geometry
,”
Phys. Plasmas
23
(
8
),
083104
(
2016
).
26.
C. D.
Child
, “
Discharge from hot CaO
,”
Phys. Rev. Ser. I
32
(
5
),
492
511
(
1911
).
27.
L.
Yongdong
,
H.
Feng
, and
L.
Chunliang
, “
A volume-weighting cloud-in-cell model for particle simulation of axially symmetric plasmas
,”
Plasma Sci. Technol.
7
(
1
),
2653
2656
(
2006
).
28.
W.
Yang
,
Y.
Li
,
H.
Wang
,
M.
Jiang
,
M.
Cao
, and
C.
Liu
, “
Multi-objective optimization of high-power microwave sources based on multi-criteria decision-making and multi-objective micro-genetic algorithm
,”
IEEE Trans. Electron Devices
70
(
7
),
3892
3898
(
2023
).
29.
S. G.
Gorbics
and
N. R.
Pereira
, “
Differential absorption spectrometer for pulsed bremsstrahlung
,”
Rev. Sci. Instrum.
64
(
7
),
1835
1840
(
1993
).
30.
R. G.
Waggener
,
M. M.
Blough
,
J. A.
Terry
,
D.
Chen
,
N. E.
Lee
,
S.
Zhang
, and
W. D.
McDavid
, “
X-ray spectra estimation using attenuation measurements from 25 kVp to 18 MV
,”
Med. Phys.
26
(
7
),
1269
1278
(
1999
).
31.
A.
Iwasaki
,
H.
Matsutani
,
M.
Kubota
,
A.
Fujimori
,
K.
Suzaki
, and
Y.
Abe
, “
A practical method for estimating high-energy X-ray spectra using the iterative perturbation principle proposed by Waggener
,”
Radiat. Phys. Chem.
67
(
2
),
81
91
(
2003
).
32.
A.
Iwasaki
,
M.
Kubota
,
J.
Hirota
,
A.
Fujimori
,
K.
Suzaki
,
M.
Aoki
, and
Y.
Abe
, “
Characteristic features of a high-energy x-ray spectra estimation method based on the Waggener iterative perturbation principle
,”
Med. Phys.
33
(
11
),
4056
4063
(
2006
).
You do not currently have access to this content.