Laser WakeField Acceleration (LWFA) is extensively used as a high-energy electron source, with electrons achieving energies up to the GeV level. The produced electron beam characteristics depend strongly on the gas density profile. When the gaseous target is a gas jet, the gas density profile is affected by parameters, such as the nozzle geometry, the gas used, and the backing pressure applied to the gas valve. An electron source based on the LWFA mechanism has recently been developed at the Institute of Plasma Physics and Lasers. To improve controllability over the electron source, we developed a set of 3D-printed nozzles suitable for creating different gas density profiles according to the experimental necessities. Here, we present a study of the design, manufacturing, evaluation, and performance of a 3D-printed nozzle intended for LWFA experiments.

1.
A. J.
Gonsalves
,
K.
Nakamura
,
J.
Daniels
,
C.
Benedetti
,
C.
Pieronek
,
T. C. H.
de Raadt
,
S.
Steinke
,
J. H.
Bin
,
S. S.
Bulanov
,
J.
van Tilborg
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
C.
Tóth
,
E.
Esarey
,
K.
Swanson
,
L.
Fan-Chiang
,
G.
Bagdasarov
,
N.
Bobrova
,
V.
Gasilov
,
G.
Korn
,
P.
Sasorov
, and
W. P.
Leemans
, “
Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide
,”
Phys. Rev. Lett.
122
,
084801
(
2019
).
2.
C.
Joshi
,
S.
Corde
, and
W. B.
Mori
, “
Perspectives on the generation of electron beams from plasma-based accelerators and their near and long term applications
,”
Phys. Plasmas
27
,
070602
(
2020
).
3.
T.
Tajima
and
J. M.
Dawson
, “
Laser electron accelerator
,”
Phys. Rev. Lett.
43
,
267
(
1979
).
4.
S. P.
Mangles
,
C. D.
Murphy
,
Z.
Najmudin
,
A. G.
Thomas
,
J. L.
Collier
,
A. E.
Dangor
,
E. J.
Divall
,
P. S.
Foster
,
J. G.
Gallacher
,
C. J.
Hooker
,
D. A.
Jaroszynski
,
A. J.
Langley
,
W. B.
Mori
,
P. A.
Norreys
,
F. S.
Tsung
,
R.
Viskup
,
B. R.
Walton
, and
K.
Krushelnick
, “
Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
,”
Nature
431
,
535
538
(
2004
).
5.
C. G. R.
Geddes
,
C.
Toth
,
J.
van Tilborg
,
E.
Esarey
,
C. B.
Schroeder
,
D.
Bruhwiler
,
C.
Nieter
,
J.
Cary
, and
W. P.
Leemans
, “
High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
,”
Nature
431
,
538
541
(
2004
).
6.
J.
Faure
,
Y.
Glinec
,
A.
Pukhov
,
S.
Kiselev
,
S.
Gordienko
,
E.
Lefebvre
,
J.-P.
Rousseau
,
F.
Burgy
, and
V.
Malka
, “
A laser–plasma accelerator producing monoenergetic electron beams
,”
Nature
431
,
541
544
(
2004
).
7.
I.
Prencipe
,
J.
Fuchs
,
S.
Pascarelli
,
D. W.
Schumacher
,
R. B.
Stephens
,
N. B.
Alexander
,
R.
Briggs
,
M.
Büscher
,
M. O.
Cernaianu
,
A.
Choukourov
,
M.
De Marco
,
A.
Erbe
,
J.
Fassbender
,
G.
Fiquet
,
P.
Fitzsimmons
,
C.
Gheorghiu
,
J.
Hund
,
L. G.
Huang
,
M.
Harmand
,
N. J.
Hartley
,
A.
Irman
,
T.
Kluge
et al, “
Targets for high repetition rate laser facilities: Needs, challenges and perspectives
,”
High Power Laser Sci. Eng.
5
,
e17
(
2017
).
8.
C. M.
Huntington
,
A. G. R.
Thomas
,
C.
McGuffey
,
T.
Matsuoka
,
V.
Chvykov
,
G.
Kalintchenko
,
S.
Kneip
,
Z.
Najmudin
,
C.
Palmer
,
V.
Yanovsky
,
A.
Maksimchuk
,
R. P.
Drake
,
T.
Katsouleas
, and
K.
Krushelnick
, “
Current filamentation instability in laser wakefield accelerators
,”
Phys. Rev. Lett.
106
,
105001
(
2011
).
9.
M.
Mori
,
K.
Kondo
,
Y.
Mizuta
,
M.
Kando
,
H.
Kotaki
,
M.
Nishiuchi
,
M.
Kado
,
A. S.
Pirozhkov
,
K.
Ogura
,
H.
Sugiyama
,
S. V.
Bulanov
,
K. A.
Tanaka
,
H.
Nishimura
, and
H.
Daido
, “
Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet
,”
Phys. Rev. Spec. Top.--Accel. Beams
12
,
082801
(
2009
).
10.
S. P. D.
Mangles
,
A. G. R.
Thomas
,
O.
Lundh
,
F.
Lindau
,
M. C.
Kaluza
,
A.
Persson
,
C. G.
Wahlström
,
K.
Krushelnick
, and
Z.
Najmudin
, “
On the stability of laser wakefield electron accelerators in the monoenergetic regime
,”
Phys. Plasmas
14
,
056702
(
2007
).
11.
V.
Malka
,
C.
Coulaud
,
J.
Geindre
,
V.
Lopez
,
Z.
Najmudin
,
D.
Neely
, and
F.
Amiranoff
, “
Characterization of neutral density profile in a wide range of pressure of cylindrical pulsed gas jets
,”
Rev. Sci. Instrum.
71
,
2329
(
2000
).
12.
K.
Schmid
and
L.
Veisz
, “
Supersonic gas jets for laser-plasma experiments
,”
Rev. Sci. Instrum.
83
,
053304
(
2012
).
13.
S.
Lorenz
,
G.
Grittani
,
E.
Chacon-Golcher
,
C. M.
Lazzarini
,
J.
Limpouch
,
F.
Nawaz
,
M.
Nevrkla
,
L.
Vilanova
, and
T.
Levato
, “
Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments
,”
Matter Radiat. Extremes
4
,
015401
(
2019
).
14.
J. L.
Henares
,
P.
Puyuelo-Valdes
,
F.
Hannachi
,
T.
Ceccotti
,
M.
Ehret
,
F.
Gobet
,
L.
Lancia
,
J. R.
Marquès
,
J. J.
Santos
,
M.
Versteegen
, and
M.
Tarisien
, “
Development of gas jet targets for laser-plasma experiments at near-critical density
,”
Rev. Sci. Instrum.
90
,
063302
(
2019
).
15.
J. P.
Couperus
,
A.
Köhler
,
T. A. W.
Wolterink
,
A.
Jochmann
,
O.
Zarini
,
H. M. J.
Bastiaens
,
K. J.
Boller
,
A.
Irman
, and
U.
Schramm
, “
Tomographic characterisation of gas-jet targets for laser wakefield acceleration
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
830
,
504
509
(
2016
).
16.
B.
Landgraf
,
M.
Schnell
,
A.
Sävert
,
M. C.
Kaluza
, and
C.
Spielmann
, “
High resolution 3D gas-jet characterization
,”
Rev. Sci. Instrum.
82
,
083106
(
2011
).
17.
F.
Sylla
,
M.
Veltcheva
,
S.
Kahaly
,
A.
Flacco
, and
V.
Malka
, “
Development and characterization of very dense submillimetric gas jets for laser-plasma interaction
,”
Rev. Sci. Instrum.
83
,
033507
(
2012
).
18.
C.
Aniculaesei
,
H. T.
Kim
,
B. J.
Yoo
,
K. H.
Oh
, and
C. H.
Nam
, “
Novel gas target for laser wakefield accelerators
,”
Rev. Sci. Instrum.
89
,
025110
(
2018
).
19.
O.
Zhou
,
H.-E.
Tsai
,
T. M.
Ostermayr
,
L.
Fan-Chiang
,
J.
van Tilborg
,
C. B.
Schroeder
,
E.
Esarey
, and
C. G. R.
Geddes
, “
Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration
,”
Phys. Plasmas
28
,
093107
(
2021
), https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0058963/13421446/093107_1_online.pdf.
20.
L.
Fan-Chiang
,
H.-S.
Mao
,
H.-E.
Tsai
,
T.
Ostermayr
,
K. K.
Swanson
,
S. K.
Barber
,
S.
Steinke
,
J.
van Tilborg
,
C. G. R.
Geddes
, and
W. P.
Leemans
, “
Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerator targets
,”
Phys. Fluids
32
,
066108
(
2020
).
21.
N.
Lemos
,
N.
Lopes
,
J. M.
Dias
, and
F.
Viola
, “
Design and characterization of supersonic nozzles for wide focus laser-plasma interactions
,”
Rev. Sci. Instrum.
80
,
103301
(
2009
).
22.
S.
Semushin
and
V.
Malka
, “
High density gas jet nozzle design for laser target production
,”
Rev. Sci. Instrum.
72
,
2961
2965
(
2001
).
23.
L.
Rovige
,
J.
Huijts
,
A.
Vernier
,
I.
Andriyash
,
F.
Sylla
,
V.
Tomkus
,
V.
Girdauskas
,
G.
Raciukaitis
,
J.
Dudutis
,
V.
Stankevic
,
P.
Gecys
, and
J.
Faure
, “
Symmetric and asymmetric shocked gas jets for laser-plasma experiments
,”
Rev. Sci. Instrum.
92
,
083302
(
2021
).
24.
W.
Lu
,
M.
Tzoufras
,
C.
Joshi
,
F. S.
Tsung
,
W. B.
Mori
,
J.
Vieira
,
R. A.
Fonseca
, and
L. O.
Silva
, “
Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime
,”
Phys. Rev. Spec. Top.--Accel. Beams
10
,
061301
(
2007
).
25.
S. P. D.
Mangles
,
A. G. R.
Thomas
,
M. C.
Kaluza
,
O.
Lundh
,
F.
Lindau
,
A.
Persson
,
Z.
Najmudin
,
C. G.
Wahlström
,
C. D.
Murphy
,
C.
Kamperidis
,
K. L.
Lancaster
,
E.
Divall
, and
K.
Krushelnick
, “
Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments
,”
Plasma Phys. Controlled Fusion
48
,
B83
(
2006
).
26.
A. R.
Maier
,
N. M.
Delbos
,
T.
Eichner
,
L.
Hübner
,
S.
Jalas
,
L.
Jeppe
,
S. W.
Jolly
,
M.
Kirchen
,
V.
Leroux
,
P.
Messner
,
M.
Schnepp
,
M.
Trunk
,
P. A.
Walker
,
C.
Werle
, and
P.
Winkler
, “
Decoding sources of energy variability in a laser-plasma accelerator
,”
Phys. Rev. X
10
,
031039
(
2020
).
27.
V.
Malka
, “
Laser plasma accelerators
,”
Phys. Plasmas
19
,
055501
(
2012
).
28.
H.
Suk
,
N.
Barov
,
J. B.
Rosenzweig
, and
E.
Esarey
, “
Plasma electron trapping and acceleration in a plasma wake field using a density transition
,”
Phys. Rev. Lett.
86
,
1011
1014
(
2001
).
29.
S.
Bulanov
,
N.
Naumova
,
F.
Pegoraro
, and
J.
Sakai
, “
Particle injection into the wave acceleration phase due to nonlinear wake wave breaking
,”
Phys. Rev. E
58
,
R5257
R5260
(
1998
).
30.
J. U.
Kim
,
N.
Hafz
, and
H.
Suk
, “
Electron trapping and acceleration across a parabolic plasma density profile
,”
Phys. Rev. E
69
,
026409
(
2004
).
31.
M.
Hansson
,
B.
Aurand
,
X.
Davoine
,
H.
Ekerfelt
,
K.
Svensson
,
A.
Persson
,
C.-G.
Wahlström
, and
O.
Lundh
, “
Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator
,”
Phys. Rev. Spec. Top.--Accel. Beams
18
,
071303
(
2015
).
32.
C.
Aniculaesei
,
V. B.
Pathak
,
H. T.
Kim
,
K. H.
Oh
,
B. J.
Yoo
,
E.
Brunetti
,
Y. H.
Jang
,
C. I.
Hojbota
,
J. H.
Shin
,
J. H.
Jeon
et al, “
Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles
,”
Sci. Rep.
9
,
11249
(
2019
).
33.
J.
Faure
,
C.
Rechatin
,
O.
Lundh
,
L.
Ammoura
, and
V.
Malka
, “
Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel
,”
Phys. Plasmas
17
,
083107
(
2010
), https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.3469581/15871202/083107_1_online.pdf.
34.
H.-E.
Tsai
,
K. K.
Swanson
,
S. K.
Barber
,
R.
Lehe
,
H.-S.
Mao
,
D. E.
Mittelberger
,
S.
Steinke
,
K.
Nakamura
,
J.
van Tilborg
,
C.
Schroeder
,
E.
Esarey
,
C. G. R.
Geddes
, and
W.
Leemans
, “
Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile
,”
Phys. Plasmas
25
,
043107
(
2018
), https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.5023694/13778085/043107_1_online.pdf.
35.
V.
Tomkus
,
V.
Girdauskas
,
J.
Dudutis
,
P.
Gečys
,
V.
Stankevič
,
G.
Račiukaitis
,
I.
Gallardo González
,
D.
Guénot
,
J. B.
Svensson
,
A.
Persson
, and
O.
Lundh
, “
Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
,”
Sci. Rep.
10
,
016807
(
2020
).
36.
C.
McGuffey
,
A.
Thomas
,
W.
Schumaker
,
T.
Matsuoka
,
V.
Chvykov
,
F.
Dollar
,
G.
Kalintchenko
,
V.
Yanovsky
,
A.
Maksimchuk
,
K.
Krushelnick
et al, “
Ionization induced trapping in a laser wakefield accelerator
,”
Phys. Rev. Lett.
104
,
025004
(
2010
).
37.
M.
Mirzaie
,
N. A. M.
Hafz
,
S.
Li
,
F.
Liu
,
F.
He
,
Y.
Cheng
, and
J.
Zhang
, “
Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets
,”
Rev. Sci. Instrum.
86
,
103502
(
2015
).
38.
A.
Grigoriadis
,
G.
Andrianaki
,
M.
Tatarakis
,
E. P.
Benis
, and
N. A.
Papadogiannis
, “
Betatron-type laser-plasma x-ray sources generated in multi-electron gas targets
,”
Appl. Phys. Lett.
118
,
131110
(
2021
).
39.
B.
Yedierler
and
S.
Bilikmen
, “
Limits on laser wakefield accelerators
,”
Rev. Sci. Instrum.
70
,
1983
1985
(
1999
).
40.
D. H.
Froula
,
C. E.
Clayton
,
T.
Döppner
,
K. A.
Marsh
,
C. P. J.
Barty
,
L.
Divol
,
R. A.
Fonseca
,
S. H.
Glenzer
,
C.
Joshi
,
W.
Lu
,
S. F.
Martins
,
P.
Michel
,
W. B.
Mori
,
J. P.
Palastro
,
B. B.
Pollock
,
A.
Pak
,
J. E.
Ralph
,
J. S.
Ross
,
C. W.
Siders
,
L. O.
Silva
, and
T.
Wang
, “
Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator
,”
Phys. Rev. Lett.
103
,
215006
(
2009
).
41.
J.
Wood
,
K.
Poder
,
N.
Lopes
,
J.
Cole
,
S.
Alatabi
,
C.
Kamperidis
,
S.
Mangles
,
A.
Sahai
,
Z.
Najmudin
,
O.
Kononenko
et al, “
Enhanced betatron radiation from a laser wakefield accelerator in a long focal length geometry
,”
Gas
1
,
2
(
2017
).
42.
M.
Vargas
,
W.
Schumaker
,
Z.-H.
He
,
Z.
Zhao
,
K.
Behm
,
V.
Chvykov
,
B.
Hou
,
K.
Krushelnick
,
A.
Maksimchuk
,
V.
Yanovsky
, and
A. G. R.
Thomas
, “
Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets
,”
Appl. Phys. Lett.
104
,
174103
(
2014
).
43.
A.
Döpp
,
E.
Guillaume
,
C.
Thaury
,
J.
Gautier
,
K.
Ta Phuoc
, and
V.
Malka
, “
3D printing of gas jet nozzles for laser-plasma accelerators
,”
Rev. Sci. Instrum.
87
,
073505
(
2016
).
44.
A.
Grigoriadis
,
G.
Andrianaki
,
I.
Fitilis
,
V.
Dimitriou
,
E. . l.
Clark
,
N. A.
Papadogiannis
,
E. P.
Benis
, and
M.
Tatarakis
, “
Improving a high-power laser-based relativistic electron source: The role of laser pulse contrast and gas jet density profile
,”
Plasma Phys. Controlled Fusion
64
,
044007
(
2022
).
45.
E. L.
Clark
,
A.
Grigoriadis
,
S.
Petrakis
,
I.
Tazes
,
G.
Andrianaki
,
A.
Skoulakis
,
Y.
Orphanos
,
E.
Kaselouris
,
I.
Fitilis
,
J.
Chatzakis
et al, “
High-intensity laser-driven secondary radiation sources using the ZEUS 45 TW laser system at the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University Research Centre
,”
High Power Laser Sci. Eng.
9
,
e53
(
2021
).
46.
A.
Grigoriadis
,
G.
Andrianaki
,
M.
Tatarakis
,
E. P.
Benis
, and
N. A.
Papadogiannis
, “
The role of laser chirp in relativistic electron acceleration using multi-electron gas targets
,”
Plasma Phys. Controlled Fusion
65
,
044001
(
2023
).
47.
A.
Grigoriadis
,
G.
Andrianaki
,
I.
Tazes
,
V.
Dimitriou
,
M.
Tatarakis
,
E. P.
Benis
, and
N. A.
Papadogiannis
, “
Efficient plasma electron accelerator driven by linearly chirped multi-10-TW laser pulses
,”
Sci. Rep.
13
,
2918
(
2023
).
48.
I.
Tazes
,
J. F.
Ong
,
O.
Tesileanu
,
K. A.
Tanaka
,
N. A.
Papadogiannis
,
M.
Tatarakis
, and
V.
Dimitriou
, “
Target normal sheath acceleration and laser wakefield acceleration particle-in-cell simulations performance on CPU & GPU architectures for high-power laser systems
,”
Plasma Phys. Controlled Fusion
62
,
094005
(
2020
).
49.
R. D.
Zucher
and
O.
Biblarz
,
Fundamentals of Gas Dynamics
,
2nd ed.
(
John Wiley & Sons
,
2002
).
50.
D.-Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
64
(
1976
).
51.
E. ToolBox, “Engineering toolbox (2001)” (
2023
).
52.
E. Edge, “Engineers edge - engineering reference data and tools,” (
2023
).
53.
K. V.
Wong
and
A.
Hernandez
, “
A review of additive manufacturing
,”
ISRN Mech. Eng.
2012
,
208760
(
2012
).
54.
G.
Andrianaki
,
A.
Grigoriadis
,
I.
Tazes
,
I.
Fitilis
,
V.
Dimitriou
,
E. P.
Benis
,
I. K.
Nikolos
,
N. A.
Papadogiannis
and
M.
Tatarakis
, “
Custom-made 3d printed nozzles for Laser Wakefield Acceleration (LWFA) experiments in the Institute of Plasma Physics and Lasers (IPPL)
,” in
Proceedings of the 3rd International Conference in Electronic Engineering,
Information Technology and Education
EEITE-2022,
28
30
September
2022, Chania
,
Crete, Greece
(
Springer
,
2022
).
55.
Q.
Liu
,
M.
Ma
,
X.
Zhang
,
B.
Zhao
,
C.
Lv
,
X.
Meng
,
Z.
Wang
,
C.
He
,
B.
Tian
,
X.
Xi
,
F.
Liu
, and
B.
Guo
, “
Application of Nomarski interference system in supersonic gas-jet target diagnosis
,”
AIP Adv.
11
,
015145
(
2021
).
56.
M.
Hipp
,
J.
Woisetschläger
,
P.
Reiterer
, and
T.
Neger
, “
Digital evaluation of interferograms
,”
Measurement
36
,
53
66
(
2004
).
57.
E. R.
Mosburg
and
M. S.
Lojko
,
Solution of the Abel integral transform for a cylindrical luminous region with optical distortions at its boundary
,
U.S. Department of Commerce, National Bureau of Standards
,
1968
.
58.
M. P.
Freeman
and
S.
Katz
, “
Determination of a radiance-coefficient profile from the observed asymmetric radiance distribution of an optically thin radiating medium
,”
J. Opt. Soc. Am.
53
,
1172
1179
(
1963
).
You do not currently have access to this content.