Quintessential parameters for needle tip-based electron sources are the work function, the tip apex radius, and the field reduction factor. They determine the static emission properties and strongly influence laser-triggered photoemission experiments at these needle tips. We present a simple method based on photoemission with two different commonly available continuous-wave laser diodes to determine both parameters in situ. We demonstrate our technique at tungsten needle tips. In a first application, use the method to in situ monitor changes of the emitter caused by illumination with strong femtosecond laser pulses. After illumination, we observe an increase in the work function caused by laser-induced changes to the apex of the tip. These changes are reversible upon field evaporation and are accompanied by a change in the spatial electron emission distribution. We believe that this simple in situ work function determination technique is applicable to any metal and in many experimental settings.

1.
P.
Hommelhoff
,
Y.
Sortais
,
A.
Aghajani-Talesh
, and
M. A.
Kasevich
, “
Field emission tip as a nanometer source of free electron femtosecond pulses
,”
Phys. Rev. Lett.
96
,
077401
(
2006
).
2.
P.
Hommelhoff
,
C.
Kealhofer
, and
M. A.
Kasevich
, “
Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses
,”
Phys. Rev. Lett.
97
,
247402
(
2006
).
3.
C.
Ropers
,
D. R.
Solli
,
C. P.
Schulz
,
C.
Lienau
, and
T.
Elsaesser
, “
Localized multiphoton emission of femtosecond electron pulses from metal nanotips
,”
Phys. Rev. Lett.
98
,
043907
(
2007
).
4.
B.
Barwick
,
C.
Corder
,
J.
Strohaber
,
N.
Chandler-Smith
,
C.
Uiterwaal
, and
H.
Batelaan
, “
Laser-induced ultrafast electron emission from a field emission tip
,”
New J. Phys.
9
,
142
(
2007
).
5.
H.
Yanagisawa
,
C.
Hafner
,
P.
Doná
,
M.
Klöckner
,
D.
Leuenberger
,
T.
Greber
,
M.
Hengsberger
, and
J.
Osterwalder
, “
Optical control of field-emission sites by femtosecond laser pulses
,”
Phys. Rev. Lett.
103
,
257603
(
2009
).
6.
M.
Krüger
,
M.
Schenk
, and
P.
Hommelhoff
, “
Attosecond control of electrons emitted from a nanoscale metal tip
,”
Nature
475
,
78
81
(
2011
).
7.
G.
Herink
,
D. R.
Solli
,
M.
Gulde
, and
C.
Ropers
, “
Field-driven photoemission from nanostructures quenches the quiver motion
,”
Nature
483
,
190
193
(
2012
).
8.
C.
Kealhofer
,
S. M.
Foreman
,
S.
Gerlich
, and
M. A.
Kasevich
, “
Ultrafast laser-triggered emission from hafnium carbide tips
,”
Phys. Rev. B
86
,
035405
(
2012
).
9.
B.
Piglosiewicz
,
S.
Schmidt
,
D. J.
Park
,
J.
Vogelsang
,
P.
Groß
,
C.
Manzoni
,
P.
Farinello
,
G.
Cerullo
, and
C.
Lienau
, “
Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures
,”
Nat. Photonics
8
,
37
42
(
2013
).
10.
M.
Bionta
,
B.
Chalopin
,
J.
Champeaux
,
S.
Faure
,
A.
Masseboeuf
,
P.
Moretto-Capelle
, and
B.
Chatel
, “
Laser-induced electron emission from a tungsten nanotip: Identifying above threshold photoemission using energy-resolved laser power dependencies
,”
J. Mod. Opt.
61
,
833
838
(
2013
).
11.
A.
Vella
, “
On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review
,”
Ultramicroscopy
132
,
5
18
(
2013
).
12.
J.
Vogelsang
,
J.
Robin
,
B. J.
Nagy
,
P.
Dombi
,
D.
Rosenkranz
,
M.
Schiek
,
P.
Groß
, and
C.
Lienau
, “
Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons
,”
Nano Lett.
15
,
4685
4691
(
2015
).
13.
A.
Arbouet
,
G. M.
Caruso
, and
F.
Houdellier
, “
Chapter one—Ultrafast transmission electron microscopy: Historical development, instrumentation, and applications
,” in
Advances in Imaging and Electron Physics
,
Advances in Imaging and Electron Physics
, edited by
P. W.
Hawkes
(
Elsevier
,
2018
), Vol.
207
, pp.
1
72
.
14.
M.
Krüger
,
C.
Lemell
,
G.
Wachter
,
J.
Burgdörfer
, and
P.
Hommelhoff
, “
Attosecond physics phenomena at nanometric tips
,”
J. Phys. B: At., Mol. Opt. Phys.
51
,
172001
(
2018
).
15.
S.
Keramati
,
W.
Brunner
,
T. J.
Gay
, and
H.
Batelaan
, “
Non-Poissonian ultrashort nanoscale electron pulses
,”
Phys. Rev. Lett.
127
,
180602
(
2021
).
16.
S. V.
Yalunin
,
M.
Gulde
, and
C.
Ropers
, “
Strong-field photoemission from surfaces: Theoretical approaches
,”
Phys. Rev. B
84
,
195426
(
2011
).
17.
G.
Wachter
,
C.
Lemell
,
J.
Burgdörfer
,
M.
Schenk
,
M.
Krüger
, and
P.
Hommelhoff
, “
Electron rescattering at metal nanotips induced by ultrashort laser pulses
,”
Phys. Rev. B
86
,
035402
(
2012
).
18.
L.
Seiffert
,
T.
Paschen
,
P.
Hommelhoff
, and
T.
Fennel
, “
High-order above-threshold photoemission from nanotips controlled with two-color laser fields
,”
J. Phys. B: At., Mol. Opt. Phys.
51
,
134001
(
2018
).
19.
L. W.
Swanson
and
L. C.
Crouser
, “
Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten
,”
Phys. Rev.
163
,
622
641
(
1967
).
20.
H.
Kawano
, “
Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces
,”
Prog. Surf. Sci.
83
,
1
165
(
2008
).
21.
S.
Yamamoto
,
N.
Saitou
, and
S.
Fukuhara
, “
Field emission current instability induced by migrating atoms on W(310) surface
,”
Surf. Sci.
71
,
191
198
(
1978
).
22.
L.
de Knoop
,
M.
Juhani Kuisma
,
J.
Löfgren
,
K.
Lodewijks
,
M.
Thuvander
,
P.
Erhart
,
A.
Dmitriev
, and
E.
Olsson
, “
Electric-field-controlled reversible order-disorder switching of a metal tip surface
,”
Phys. Rev. Mater.
2
,
085006
(
2018
).
23.
J. W.
Kim
and
A.
Kim
, “
Absolute work function measurement by using photoelectron spectroscopy
,”
Curr. Appl. Phys.
31
,
52
59
(
2021
).
24.
P.
Cutler
,
J.
He
,
J.
Miller
,
N.
Miskovsky
,
B.
Weiss
, and
T.
Sullivan
, “
Theory of electron emission in high fields from atomically sharp emitters: Validity of the Fowler-Nordheim equation
,”
Prog. Surf. Sci.
42
,
169
185
(
1993
).
25.
R.
Gomer
,
Field Emission and Field Ionization
(
Harvard University Press
,
1961
).
26.
T.
Sakurai
and
E. W.
Müller
, “
Field calibration using the energy distribution of field ionization
,”
Phys. Rev. Lett.
30
,
532
535
(
1973
).
27.
R.
Gomer
, “
Field emission, field ionization, and field desorption
,”
Surf. Sci.
299–300
,
129
152
(
1994
).
28.
B.
Gault
,
M.
Moody
,
J.
Cairney
, and
S.
Ringer
,
Atom Probe Microscopy
,
Springer Series in Materials Science
(
Springer
,
New York
,
2012
).
29.
B.-F.
Ju
,
Y.-L.
Chen
, and
Y.
Ge
, “
The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters
,”
Rev. Sci. Instrum.
82
,
013707
(
2011
).
30.
E. W.
Müller
, “
Das Feldionenmikroskop
,”
131
,
136
142
(
1951
).
31.
A.
Einstein
, “
Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt
,”
Ann. Phys.
322
,
132
148
(
1905
).
32.
S.
Meier
,
T.
Higuchi
,
M.
Nutz
,
A.
Högele
, and
P.
Hommelhoff
, “
High spatial coherence in multiphoton-photoemitted electron beams
,”
Appl. Phys. Lett.
113
,
143101
(
2018
).
33.
P.
Dienstbier
,
L.
Seiffert
,
T.
Paschen
,
A.
Liehl
,
A.
Leitenstorfer
,
T.
Fennel
, and
P.
Hommelhoff
, “
Tracing attosecond electron emission from a nanometric metal tip
,”
Nature
616
,
702
706
(
2023
).
34.
L.
Lin
,
R.
Jacobs
,
T.
Ma
,
D.
Chen
,
J.
Booske
, and
D.
Morgan
, “
Work function: Fundamentals, measurement, calculation, engineering, and applications
,”
Phys. Rev. Appl.
19
,
037001
(
2023
).
You do not currently have access to this content.