This paper presents a comprehensive review of mechanical design and synthesis methods for piezo-actuated compliant micro-positioning stages, which play an important role in areas where high precision motion is required, including bio-robotics, precision manufacturing, automation, and aerospace. Unlike conventional rigid-link mechanisms, the motion of compliant mechanisms is realized by using flexible elements, whereby deformation requires no lubrication while achieving high movement accuracy without friction. As compliant mechanisms differ significantly from traditional rigid mechanisms, recent research has focused on investigating various technologies and approaches to address challenges in the flexure-based micro-positioning stage in the aspects of synthesis, analysis, material, fabrication, and actuation. In this paper, we reviewed the main concepts and key advances in the mechanical design of compliant piezo-actuated micro-positioning stages, with a particular focus on flexure design, kineto-static modeling, actuators, material selection, and functional mechanisms including amplification and self-guiding ones. We also identified the key issues and directions for the development trends of compliant micro-positioning stages.

1.
S. C.
Chen
and
M. L.
Culpepper
, “
Design of a six-axis micro-scale nanopositioner—μHexFlex
,”
Precis. Eng.
30
(
3
),
314
324
(
2006
).
2.
A.
Al-Jodah
,
B.
Shirinzadeh
,
M.
Ghafarian
,
T. K.
Das
,
Y.
Tian
,
D.
Zhang
, and
F.
Wang
, “
Development and control of a large range XYΘ micropositioning stage
,”
Mechatronics
66
,
102343
(
2020
).
3.
C.
Yang
,
Q.
Zhao
,
H.
Wang
, and
Z.
Zhang
, “
Study on intelligent control system of two-dimensional platform based on ultra-precision positioning and large range
,”
Precis. Eng.
34
(
3
),
627
633
(
2010
).
4.
J.
Kopac
and
Z.
Kampus
, “
Incremental sheet metal forming on CNC milling machine-tool
,”
J. Mater. Process. Technol.
162-163
,
622
628
(
2005
).
5.
L. L.
Howell
,
Compliant Mechanisms
(
Wiley
,
2001
).
6.
M.
Ling
,
L. L.
Howell
,
J.
Cao
, and
G.
Chen
, “
Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: A survey
,”
Appl. Mech. Rev.
72
(
3
),
030802
(
2020
).
7.
Y.
Qin
,
Y.
Tian
, and
D.
Zhang
, “
Design and dynamic modeling of a 2-DOF decoupled flexure-based mechanism
,”
Chin. J. Mech. Eng.
25
(
4
),
688
696
(
2012
).
8.
A.
Hijazi
,
J. F.
Brethé
, and
D.
Lefebvre
, “
Singularity analysis of a planar robotic manipulator: Application to an XY-Theta platform
,”
Mech. Mach. Theory
100
,
104
119
(
2016
).
9.
B.
Shi
,
F.
Wang
,
C.
Han
,
Z.
Huo
, and
Y.
Tian
, “
Design of a precise positioning stage actuated by a double-layer stick-slip actuator used for precise assembly
,”
Mech. Mach. Theory
185
,
105336
(
2023
).
10.
W.
Zhu
,
Z.
Zhu
,
Y.
Shi
,
X.
Wang
,
K.
Guan
, and
B.
Ju
, “
Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning
,”
Smart Mater. Struct.
25
,
115033
(
2016
).
11.
W.
Dan
and
F.
Rui
, “
Design and nonlinear analysis of a 6-DOF compliant parallel manipulator with spatial beam flexure hinges
,”
Precis. Eng.
45
,
365
373
(
2016
).
12.
Y.
Xie
,
F.
Zeng
,
W.
Xi
,
Y.
Zhou
,
H.
Liu
, and
M.
Chen
, “
A robot-assisted cell manipulation system with an adaptive visual servoing method
,”
Micromachines
7
(
6
),
104
(
2016
).
13.
M.
Gauthier
and
E.
Piat
, “
Control of a particular micro-macro positioning system applied to cell micromanipulation
,”
IEEE Trans. Autom. Sci. Eng.
3
(
3
),
264
271
(
2006
).
14.
Y.
Xie
,
Y.
Zhou
,
Y.
Lin
,
L.
Wang
, and
W.
Xi
, “
Development of a microforce sensor and its array platform for robotic cell microinjection force measurement
,”
Sensors
16
(
4
),
483
(
2016
).
15.
P. D.
Dalton
,
T. B.
Woodfield
,
V.
Mironov
, and
J.
Groll
, “
Advances in hybrid fabrication toward hierarchical tissue constructs
,”
Adv. Sci.
7
(
11
),
1902953
(
2020
).
16.
M.
Cui
,
W.
Yang
,
Y.
Guan
, and
Z.
Zhang
, “
Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system
,”
Precis. Eng.
78
,
60
69
(
2022
).
17.
Z.
Zhu
,
X.
Zhou
,
Z.
Liu
,
R.
Wang
, and
L.
Zhu
, “
Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining
,”
Precis. Eng.
38
(
4
),
809
820
(
2014
).
18.
C.
Li
,
H.
Xu
, and
S. C.
Chen
, “
Design of a precision multi-layer roll-to-roll printing system
,”
Precis. Eng.
66
,
564
576
(
2020
).
19.
M.
Hafttananian
,
A.
Neild
, and
V. J.
Cadarso
, “
Integratable micro-optical compound objective lens using soft lithography
,”
Sens. Actuators, A
360
,
114512
(
2023
).
20.
I.
Mitsuishi
,
Y.
Ezoe
,
K.
Ishizu
,
T.
Moriyama
,
M.
Mita
,
N. Y.
Yamasaki
,
K.
Mitsuda
,
Y.
Kanamori
,
K.
Morishita
, and
K.
Nakajima
, “
Novel ultra-lightweight and high-resolution MEMS X-ray optics for space astronomy
,”
Sens. Actuators, A
188
,
411
416
(
2012
).
21.
M.
Silvestri
,
M.
Confalonieri
, and
A.
Ferrario
, “
Piezoelectric actuators for micro positioning stages in automated machines: Experimental characterization of open loop implementations
,”
FME Trans.
45
(
3
),
331
338
(
2017
).
22.
J.
Velasco
,
I.
Calvo
,
O.
Barambones
,
P.
Venegas
, and
C.
Napole
, “
Experimental validation of a sliding mode control for a stewart platform used in aerospace inspection applications
,”
Mathematics
8
(
11
),
2051
(
2020
).
23.
Y. K.
Yong
,
S.
Aphale
, and
S. O. R.
Moheimani
, “
Design, identification and control of a flexure-based XY stage for fast nanoscale positioning
,”
IEEE Trans. Nanotechnol.
8
(
1
),
46
54
(
2009
).
24.
C.
Li
,
G.
Gu
,
M.
Yang
, and
L.
Zhu
, “
Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage
,”
Rev. Sci. Instrum.
84
(
12
),
125111
(
2013
).
25.
U.
Bhagat
,
B.
Shirinzadeh
,
L.
Clark
,
P.
Chea
,
Y.
Qin
,
Y.
Tian
, and
D.
Zhang
, “
Design and analysis of a novel flexure-based 3-DOF mechanism
,”
Mech. Mach. Theory
74
,
173
187
(
2014
).
26.
K.
Cai
,
Y.
Tian
,
X.
Liu
,
D.
Zhang
,
J.
Shang
, and
B.
Shirinzadeh
, “
Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity
,”
Robot. Comput.-Integr. Manuf.
56
,
95
105
(
2019
).
27.
S. P.
Wadikhaye
,
Y. K.
Yong
, and
S. R.
Moheimani
, “
Design of a compact serial-kinematic scanner for high-speed atomic force microscopy: An analytical approach
,”
Micro Nano Lett.
7
(
4
),
309
313
(
2012
).
28.
J.
Pinskier
,
B.
Shirinzadeh
,
L.
Clark
,
Y.
Qin
, and
S.
Fatikow
, “
Design, development and analysis of a haptic-enabled modular flexure-based manipulator
,”
Mechatronics
40
,
156
166
(
2016
).
29.
S.
Awtar
and
A. H.
Slocum
, “
Constraint-based design of parallel kinematic XY flexure mechanisms
,”
J. Mech. Des.
129
(
8
),
816
830
(
2007
).
30.
M.
Olfatnia
,
L.
Cui
,
P.
Chopra
, and
S.
Awtar
, “
Large range dual-axis micro-stage driven by electrostatic comb-drive actuators
,”
J. Manuf. Syst.
23
(
10
),
105008
(
2013
).
31.
Y.
Oba
,
Y.
Yamada
,
K.
Igarashi
,
S.
Katsura
, and
Y.
Kakinuma
, “
Replication of skilled polishing technique with serial-parallel mechanism polishing machine
,”
Precis. Eng.
45
,
292
300
(
2016
).
32.
C.
Li
and
S. C.
Chen
, “
Design of compliant mechanisms based on compliant building elements. Part I: Principles
,”
Precis. Eng.
81
,
207
220
(
2023
).
33.
C.
Li
and
S. C.
Chen
, “
Design of compliant mechanisms based on compliant building elements. Part II: Practice
,”
Precis. Eng.
81
,
8
21
(
2023
).
34.
A. E.
Albanesi
,
V. D.
Fachinotti
, and
M. A.
Pucheta
, “
A review on design methods for compliant mechanisms
,”
Mec. Comput.
29
(
3
),
59
72
(
2010
).
35.
H. A.
Eschenauer
and
N.
Olhoff
, “
Topology optimization of continuum structures: A review
,”
Appl. Mech. Rev.
54
(
4
),
331
390
(
2001
).
36.
Z.
Wu
and
Q.
Xu
, “
Survey on recent designs of compliant micro-/nano-positioning stages
,”
Actuators
7
(
1
),
5
(
2018
).
37.
P.
Gao
,
S. M.
Swei
, and
Z.
Yuan
, “
A new piezodriven precision micropositioning stage utilizing flexure hinges
,”
Nanotechnology
10
(
4
),
394
(
1999
).
38.
Q.
Zhang
,
J.
Zhao
,
X.
Shen
,
Q.
Xiao
,
J.
Huang
, and
Y.
Wang
, “
Design, modeling, and testing of a novel XY piezo-actuated compliant micro-positioning stage
,”
Micromachines
10
(
9
),
581
(
2019
).
39.
H. J.
Lee
,
S.
Woo
,
J.
Park
,
J. H.
Jeong
,
M.
Kim
,
J.
Ryu
,
D. G.
Gweon
, and
Y. M.
Choi
, “
Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion
,”
Microsyst. Technol.
24
(
6
),
2653
2662
(
2018
).
40.
Y.
Tian
,
B.
Shirinzadeh
,
D.
Zhang
, and
G.
Alici
, “
Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nano-manipulation
,”
Mech. Syst. Signal Proc.
23
(
3
),
957
978
(
2009
).
41.
L.
Zhang
,
J.
Gao
,
X.
Chen
,
H.
Tang
,
Y.
Chen
,
Y.
He
, and
Z.
Yang
, “
A rapid vibration reduction method for macro-micro composite precision positioning stage
,”
IEEE Trans. Ind. Electron.
64
(
1
),
401
411
(
2017
).
42.
N.
Wang
,
Z.
Zhang
,
X.
Zhang
, and
C.
Cui
, “
Optimization of a 2-DOF micro-positioning stage using corrugated flexure units
,”
Mech. Mach. Theory
121
,
683
696
(
2018
).
43.
Y.
Hao
,
T.
Wang
,
Z.
Xie
,
W.
Sun
,
Z.
Liu
,
X.
Fang
,
M.
Yang
, and
L.
Wen
, “
A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties
,”
J. Manuf. Syst.
28
(
2
),
024004
(
2018
).
44.
N.
Roy
and
M.
Cullinan
, “
Design and characterization of a two-axis, flexure-based nanopositioning stage with 50 mm travel and reduced higher order
,”
Precis. Eng.
53
,
236
247
(
2018
).
45.
J. M.
Paros
and
L.
Weisbord
, “
How to design flexure hinges
,”
Mach. Des.
37
(
27
),
151
156
(
1965
).
46.
S. T.
Smith
,
Flexures: Elements of Elastic Mechanisms
(
CRC Press
,
2000
).
47.
N.
Lobontiu
,
Compliant Mechanisms: Design of Flexure Hinges
(
CRC Press
,
2002
).
48.
D.
Kang
and
D.
Gweon
, “
Analysis and design of a cartwheel-type flexure hinge
,”
Precis. Eng.
37
(
1
),
33
43
(
2013
).
49.
H.
Wei
,
B.
Shirinzadeh
,
H.
Tang
, and
X.
Niu
, “
Closed-form compliance equations for elliptic-revolute notch type multiple-axis flexure hinges
,”
Mech. Mach. Theory
156
,
104154
(
2021
).
50.
Q.
Meng
, “
A design method for flexure-based compliant mechanisms on the basis of stiffness and stress characteristics
,” Ph.D. thesis (
University of Bologna
,
Bologna, Italy
,
2012
).
51.
W.
Ma
,
R.
Wang
,
X.
Zhou
, and
G.
Meng
, “
The performance comparison of typical notched flexure hinges
,”
Proc. Inst. Mech. Eng., Part C
234
(
9
),
1859
1867
(
2019
).
52.
Y. K.
Yong
,
T. F.
Lu
, and
D. C.
Handley
, “
Review of circular flexure hinge design equations and derivation of empirical formulations
,”
Precis. Eng.
32
(
2
),
63
70
(
2008
).
53.
H.
Li
,
Y.
Liu
,
Z.
Wang
,
C.
Leng
,
Z.
Zhang
, and
G.
Hao
, “
A constraint-flow based method of synthesizing XYθ compliant parallel mechanisms with decoupled motion and actuation characteristics
,”
Mech. Mach. Theory
178
,
105085
(
2022
).
54.
R.
Lin
,
X.
Zhang
,
X.
Long
, and
S.
Fatikow
, “
Hybrid flexure hinges
,”
Rev. Sci. Instrum.
84
(
8
),
085004
(
2013
).
55.
H.
Wei
,
J.
Yang
,
F.
Wu
,
X.
Niu
, and
B.
Shirinzadeh
, “
Analytical modelling and experiments for hybrid multiaxis flexure hinges
,”
Precis. Eng.
76
,
294
304
(
2022
).
56.
J.
Wu
,
Y.
Zhang
,
Y.
Lu
,
Z.
Wen
,
D.
Bin
, and
J.
Tan
, “
Modeling and design of a two-axis elliptical notch flexure hinge
,”
Rev. Sci. Instrum.
89
,
045010
(
2018
).
57.
N.
Lobontiu
and
E.
Garcia
, “
Two-axis flexure hinges with axially-collocated and symmetric notches
,”
Comput. Struct.
81
(
13
),
1329
1341
(
2003
).
58.
L.
Li
,
D.
Zhang
,
H.
Qu
, and
Y.
Wang
, “
Generalized model and configuration design of multiple-axis flexure hinges
,”
Mech. Mach. Theory
169
,
104677
(
2022
).
59.
Y.
Li
and
Q.
Xu
, “
A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
8
(
2
),
265
279
(
2011
).
60.
X.
Tan
,
F. C.
ZhuWang
,
Y.
Yu
,
J.
Shi
,
X.
Qi
,
F.
Yuan
, and
J.
Tan
, “
Two-dimensional micro-/nanoradian angle generator with high resolution and repeatability based on piezo-driven double-axis flexure hinge and three capacitive sensors
,”
Sensors
17
(
11
),
2672
(
2017
).
61.
Z.
Du
,
R.
Shi
, and
W.
Dong
, “
A piezo-actuated high-precision flexible parallel pointing mechanism: Conceptual design, development, and experiments
,”
IEEE Trans. Robot.
30
(
1
),
131
137
(
2014
).
62.
Y.
Yu
and
Q.
Li
, “
On the design, manufacturing and experiment of a new type flexural joint
,”
J. Mech. Eng.
54
(
13
),
79
85
(
2018
).
63.
L.
Liu
,
S.
Bi
,
Q.
Yang
, and
Y.
Wang
, “
Design and experiment of generalized triple cross-spring flexure pivots applied to the ultra-precision instruments
,”
Rev. Sci. Instrum.
85
,
105102
(
2014
).
64.
P.
Spanoudakis
,
L.
Kiener
,
F.
Cosandier
,
P.
Schwab
,
L.
Giriens
,
J.
Kruis
,
D.
Grivon
,
G.
Psoni
,
C.
Vrettos
, and
N.
Bencheikh
, “
Large angle flexure pivot development for future science payloads
,” in
Proceedings of 18th European Space Mechanisms and Tribology Symposium
,
Munich, Germany
,
September 2019
.
65.
S.
Henein
,
P.
Spanoudakis
,
S.
Droz
,
L. I.
Myklebust
, and
E.
Onillon
, “
Flexure pivot for aerospace mechanisms
,” in
Proceedings of the 10th European Space Mechanisms and Tribology Symposium
,
San Sebastián, Spain
,
24–26 September
, Vol.
524
, pp.
285
288
.
66.
M.
Ling
,
J.
Cao
,
L. L.
Howell
, and
M.
Zeng
, “
Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: A semi-analytical matrix displacement method
,”
Mech. Mach. Theory
125
,
169
184
(
2018
).
67.
J.
Dearden
,
C.
Grames
,
J.
Orr
,
B. D.
Jensen
,
S. P.
Magleby
, and
L. L.
Howell
, “
Cylindrical cross-axis flexural pivots
,”
Precis. Eng.
51
,
604
613
(
2018
).
68.
N.
Wang
,
Z.
Zhang
,
F.
Yue
, and
X.
Zhang
, “
Exploration of translational joint design using corrugated flexure units with Bézier curve segments
,”
J. Mech. Des.
141
(
5
),
052301
(
2019
).
69.
J. A.
Gallego
and
J.
Herder
, “
Synthesis methods in compliant mechanisms: An overview
,” in
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
49040
(
ASME
,
2009
), pp.
193
214
.
70.
J. B.
Hopkins
and
M. L.
Culpepper
, “
Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)—Part I: Principles
,”
Precis. Eng.
34
(
2
),
259
270
(
2010
).
71.
H. J.
Su
,
D. V.
Dorozhkin
, and
J. M.
Vance
, “
A screw theory approach for the conceptual design of flexible joints for compliant mechanisms
,”
J. Mech. Robot.
1
(
4
),
041009
(
2009
).
72.
J.
Yu
,
S.
Li
,
H. J.
Su
, and
M. L.
Culpepper
, “
Screw theory based methodology for the deterministic type synthesis of flexure mechanisms
,”
J. Mech. Des.
3
(
3
),
031008
(
2011
).
73.
K.
Hoetmer
,
G.
Woo
,
C.
Kim
, and
J.
Herder
, “
Negative stiffness building blocks for statically balanced compliant mechanisms: Design and testing
,”
J. Mech. Robot.
2
(
4
),
041007
(
2010
).
74.
G.
Krishnan
,
C.
Kim
, and
S.
Kota
, “
An intrinsic geometric framework for the building block synthesis of single point compliant mechanisms
,”
J. Mech. Robot.
3
(
1
),
011001
(
2011
).
75.
P.
Bernardoni
,
P.
Bidaud
,
C.
Bidard
, and
F.
Gosselin
, “
A new compliant mechanism design methodology based on flexible building blocks,” in Smart Structure
s and
Materials
2004: Modeling, Signal Processing, and Control (SPIE,
2004
), Vol. 5383, pp.
244
254
.
76.
C. J.
Kim
,
Y.-M.
Moon
, and
S.
Kota
, “
A building block approach to the conceptual synthesis of compliant mechanisms utilizing compliance and stiffness ellipsoids
,”
J. Mech. Des.
130
(
2
),
022308
(
2008
).
77.
L.
Cao
,
A. T.
Dolovich
,
A.
Chen
, and
W. C.
Zhang
, “
Topology optimization of efficient and strong hybrid compliant mechanisms using a mixed mesh of beams and flexure hinges with strength control
,”
Mech. Mach. Theory
121
,
213
227
(
2018
).
78.
B.
Zhu
,
X.
Zhang
,
H.
Zhang
,
J.
Liang
,
H.
Zang
,
H.
Li
, and
R.
Wang
, “
Design of compliant mechanisms using continuum topology optimization: A review
,”
Mech. Mach. Theory
143
,
103622
(
2020
).
79.
G. Z.
Lum
,
T. J.
Teo
,
G.
Yang
,
S. H.
Yeo
, and
M.
Sitti
, “
Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of-freedom flexure-based parallel mechanism
,”
Precis. Eng.
39
,
125
133
(
2015
).
80.
L.
Clark
,
B.
Shirinzadeh
,
J.
Pinskier
,
Y.
Tian
, and
D.
Zhang
, “
Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms
,”
Mech. Mach. Theory
122
,
113
131
(
2018
).
81.
C. H.
Liu
,
F. M.
Chung
, and
Y. P.
Ho
, “
Topology optimization for design of a 3D-printed constant-force compliant finger
,”
IEEE/ASME Trans. Mechatron.
26
(
4
),
1828
1836
(
2021
).
82.
C.
Liu
,
M.
Hsu
,
T.
Chen
, and
Y.
Chen
, “
Optimal design of a compliant constant-force mechanism to deliver a nearly constant output force over a range of input displacements
,”
Soft Rob.
7
(
6
),
758
769
(
2020
).
83.
B.
Ding
,
Y.
Li
,
X.
Xiao
,
Y.
Tang
, and
B.
Li
, “
Design and analysis of a 3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system
,”
Mech. Sci.
8
(
1
),
117
126
(
2017
).
84.
S.
Šalinić
and
A.
Nikolić
, “
A new pseudo-rigid-body model approach for modeling the quasi-static response of planar flexure-hinge mechanisms
,”
Mech. Mach. Theory
124
,
150
161
(
2018
).
85.
X.
Pei
,
J.
Yu
,
G.
Zong
, and
S.
Bi
, “
An effective pseudo-rigid-body method for beam-based compliant mechanisms
,”
Precis. Eng.
34
,
634
639
(
2010
).
86.
Y.
Yu
,
L. L.
Howell
,
C.
Lusk
,
Y.
Yue
, and
M.
He
, “
Dynamic modeling of compliant mechanisms based on the Pseudo-Rigid-Body Model
,”
J. Mech. Des.
127
,
760
765
(
2005
).
87.
L.
Li
,
D.
Zhang
,
S.
Guo
, and
H.
Qu
, “
Design, modeling, and analysis of hybrid flexure hinges
,”
Mech. Mach. Theory
131
,
300
316
(
2019
).
88.
J.
Wu
,
Y.
Zhang
,
S.
Cai
, and
J.
Cui
, “
Modeling and analysis of conical-shaped notch flexure hinges based on NURBS
,”
Mech. Mach. Theory
128
,
560
568
(
2018
).
89.
W.
Tuo
,
X.
Li
,
Y.
Ji
,
T.
Wu
, and
Z.
Xie
, “
Analytical compliance model for right circle flexure hinge considering the stress concentration effect
,”
Int. J. Precis. Eng. Manuf.
21
(
5
),
895
904
(
2020
).
90.
J.
Kong
,
Z.
Huang
,
X.
Xian
,
Y.
Wang
, and
P.
Yu
, “
Generalized model for conic-V-shaped flexure hinges
,”
Sci. Prog.
103
(
4
),
003685042098121
(
2020
).
91.
M.
Ling
,
J.
Cao
,
M.
Zeng
,
J.
Lin
, and
D. J.
Inman
, “
Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms
,”
Smart Mater. Struct.
25
,
075022
(
2016
).
92.
Z.
Zhu
,
X.
Zhou
,
R.
Wang
, and
Q.
Liu
, “
A simple compliance modeling method for flexure hinges
,”
Sci. China-Technol. Sci.
58
(
1
),
56
63
(
2015
).
93.
B.
Ding
,
X.
Li
, and
Y.
Li
, “
FEA-based optimization and experimental verification of a typical flexure-based constant force module
,”
Sens. Actuators, A
332
(
1
),
113083
(
2021
).
94.
G. L.
Holst
,
G. H.
Teichert
, and
B. D.
Jensen
, “
Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms
,”
J. Mech. Des.
133
,
051002
(
2011
).
95.
A.
Zhang
and
G.
Chen
, “
A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms
,”
J. Mech. Robot.
5
(
2
),
021006
(
2013
).
96.
Z.
Zhou
,
Y.
Gao
,
L.
Sun
,
W.
Dong
, and
Z.
Du
, “
A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: Design, modeling and case studies
,”
Mech. Sci.
11
(
1
),
75
89
(
2020
).
97.
A.
Banerjee
,
B.
Bhattacharya
, and
A. K.
Mallik
, “
Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches
,”
Int. J. Non-Linear Mech.
43
,
366
376
(
2008
).
98.
W. O.
Schotborgh
,
F. G. M.
Kokkeler
,
H.
Tragter
, and
F. J. A. M.
van Houten
, “
Dimensionless design graphs for flexure elements and a comparison between three flexure elements
,”
Precis. Eng.
29
(
1
),
41
47
(
2005
).
99.
S.
Awtar
and
S.
Sen
, “
A generalized constraint model for two-dimensional beam flexures: Nonlinear load-displacement formulation
,”
J. Mech. Des.
132
(
8
),
081008
(
2010
).
100.
F.
Ma
and
G.
Chen
, “
Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model
,”
J. Mech. Robot.
8
(
2
),
021018
(
2016
).
101.
S.
Zhang
and
E. D.
Fasse
, “
A finite-element-based method to determine the spatial stiffness properties of a notch hinge
,”
J. Mech. Des.
123
(
1
),
141
147
(
2001
).
102.
Q.
Chen
,
Y.
Haddab
, and
P.
Lutz
, “
Digital microrobotics based on bistable modules: Design of compliant bistable structures
,” in
Proceedings of 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications
(
IEEE
,
2008
), pp.
36
41
.
103.
D.
Lateş
,
M.
Căşvean
, and
S.
Moica
, “
Fabrication methods of compliant mechanisms
,”
Procedia Eng.
181
,
221
225
(
2017
).
104.
G. R.
Hayes
,
M. I.
Frecker
, and
J. H.
Adair
, “
Fabrication of compliant mechanisms on the mesoscale
,”
Mech. Sci.
2
(
1
),
129
137
(
2011
).
105.
A. T.
Gaynor
,
N. A.
Meisel
,
C. B.
Williams
, and
J. K.
Guest
, “
Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing
,”
J. Manuf. Sci. Eng.-Trans. ASME
136
(
6
),
061015
(
2014
).
106.
W.
Bejgerowski
,
J. W.
Gerdes
,
S. K.
Gupta
, and
H. A.
Bruck
, “
Design and fabrication of miniature compliant hinges for multi-material compliant mechanisms
,”
Int. J. Adv. Manuf. Technol.
57
(
5-8
),
437
452
(
2011
).
107.
B.
Ding
,
Y.
Li
,
X.
Xiao
, and
Z.
Wu
, “
Design and analysis of a flexure-based modular precision positioning stage with two different materials
,”
Multidiscip. Model. Mater. Struct.
14
(
3
),
516
529
(
2018
).
108.
B. C.
Kandpal
and
H.
Singh
, “
Machining of aluminium metal matrix composites with electrical discharge machining—A review
,”
Mater. Today: Proc.
2
(
4-5
),
1665
1671
(
2015
).
109.
C.
Kenel
,
D.
Grolimund
,
X.
Li
,
E.
Panepucci
,
V. A.
Samson
,
D. F.
Sanchez
,
F.
Marone
, and
C.
Leinenbach
, “
In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction
,”
Sci. Rep.
7
(
1
),
16358
(
2017
).
110.
G. E. R. D.
Lütjering
, “
Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys
,”
Mater. Sci. Eng., A
243
(
1-2
),
32
45
(
1998
).
111.
M. R.
Siti Nur Hazwani
,
L. X.
Lim
,
Z.
Lockman
, and
H.
Zuhailawati
, “
Fabrication of titanium-based alloys with bioactive surface oxide layer as biomedical implants: Opportunity and challenges
,”
Trans. Nonferrous Met. Soc. China
32
(
1
),
1
44
(
2022
).
112.
C.
Qiu
,
G. A.
Ravi
,
C.
Dance
,
A.
Ranson
,
S.
Dilworth
, and
M. M.
Attallah
, “
Fabrication of large Ti-6Al-4V structures by direct laser deposition
,”
J. Alloys Compd.
629
,
351
361
(
2015
).
113.
L.
Zhong
,
Z.
Ding
, and
F.
Yuan
, “
Approach of decreasing effect of temperature on positioning accuracy of ultra-precision micro-feed system
,” in
2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems
(
IEEE
,
2006
), pp.
779
783
.
114.
F. E.
Scire
and
E. C.
Teague
, “
Piezodriven 50-μm range stage with subnanometer resolution
,”
Rev. Sci. Instrum.
49
(
12
),
1735
1740
(
1978
).
115.
M.
Shiga
, “
Invar alloys
,”
Curr. Opin. Solid State Mater. Sci.
1
(
3
),
340
348
(
1996
).
116.
Y.
Moritoki
,
T.
Furukawa
,
J.
Sun
,
M.
Yokoyama
,
T.
Shimono
,
T.
Yamada
,
S.
Nishiwaki
,
T.
Kageyama
,
J.
Fukuda
,
M.
Mukai
, and
S.
Maruo
, “
3D-printed micro-tweezers with a compliant mechanism designed using topology optimization
,”
Micromachines
12
(
5
),
579
(
2021
).
117.
X.
Chen
,
Y.
Li
,
Y.
Xie
, and
R.
Wang
, “
Design and analysis of new ultra compact decoupled XYZθ stage to achieve large-scale high precision motion
,”
Mech. Mach. Theory
167
,
104527
(
2022
).
118.
P.
Suryawanshi
and
G.
Arunkumar
, “
A review on design and development of multi degree of freedom compliant mechanism
,”
AIP Conf. Proc.
2460
(
1
),
080005
(
2022
).
119.
L.
Clark
,
B.
Shirinzadeh
,
Y.
Zhong
,
Y.
Tian
, and
D.
Zhang
, “
Design and analysis of a compact flexure-based precision pure rotation stage without actuator redundancy
,”
Mech. Mach. Theory
105
,
129
144
(
2016
).
120.
S. A.
MirMohammad Sadeghi
,
S. F.
Hoseini
,
A.
Fathi
, and
H.
Mohammadi Daniali
, “
Experimental hysteresis identification and micro-position control of a shape-memory-alloy rod actuator
,”
Int. J. Eng.
32
(
1
),
71
77
(
2019
).
121.
A.
AbuZaiter
,
O. F.
Hikmat
,
M.
Nafea
, and
M. S. M.
Ali
, “
Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators
,”
Smart Mater. Struct.
25
(
10
),
105004
(
2016
).
122.
E. R.
Homer
,
M. B.
Harris
,
S. A.
Zirbel
,
J. A.
Kolodziejska
,
H.
Kozachkov
,
B. P.
Trease
,
J. P. C.
Borgonia
,
G. S.
Agnes
,
L. L.
Howell
, and
D. C.
Hofmann
, “
New methods for developing and manufacturing compliant mechanisms utilizing bulk metallic glass
,”
Adv. Eng. Mater.
16
(
7
),
850
856
(
2014
).
123.
S.
Liao
,
B.
Ding
, and
Y.
Li
, “
Design, assembly, and simulation of flexure-based modular micro-positioning stages
,”
Machines
10
(
6
),
421
(
2022
).
124.
Z.
Wu
,
Y.
Li
, and
M.
Hu
, “
Design and optimization of full decoupled micro/nano-positioning stage based on mathematical calculation
,”
Mech. Sci.
9
(
2
),
417
429
(
2018
).
125.
J.
Ha
,
Y.
Kung
,
S.
Hu
, and
R.
Fung
, “
Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method
,”
Sens. Actuators, A
125
,
565
572
(
2006
).
126.
C. R.
Mortensen
,
B. L.
Weight
,
L. L.
Howell
, and
S. P.
Magleby
, “
Compliant mechanism prototyping
,” in
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
35203
(
ASME
,
2000
), pp.
1371
1380
.
127.
H.
Wei
,
L.
Wang
,
X.
Niu
,
J.
Zhang
, and
A.
Simeone
, “
Fabrication, experiments, and analysis of an LBM additive-manufactured flexure parallel mechanism
,”
Micromachines
9
(
11
),
572
(
2018
).
128.
W. E.
King
,
A. T.
Anderson
,
R. M.
Ferencz
,
N. E.
Hodge
,
C.
Kamath
,
S. A.
Khairallah
, and
A. M.
Rubenchik
, “
Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges
,”
Appl. Phys. Rev.
2
(
4
),
041304
(
2015
).
129.
T. M.
Mower
and
M. J.
Long
, “
Mechanical behavior of additive manufactured, powder-bed laser-fused materials
,”
Mater. Sci. Eng., A
651
,
198
213
(
2016
).
130.
J.
Sharkey
,
D.
Foo
,
A.
Kabla
,
J.
Baumberg
, and
R.
Bowman
, “
A one-piece 3D printed flexure translation stage for open-source microscopy
,”
Rev. Sci. Instrum.
87
,
025104
(
2016
).
131.
Y.
Zhuang
,
W.
Song
,
G.
Ning
,
X.
Sun
,
Z.
Sun
,
G.
Xu
,
B.
Zhang
,
Y.
Chen
, and
S.
Tao
, “
3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites
,”
Mater. Des.
126
,
135
140
(
2017
).
132.
C.
Lee
and
J. A.
Tarbutton
, “
Compliance and control characteristics of an additive manufactured-flexure stage
,”
Rev. Sci. Instrum.
86
(
4
),
045107
(
2015
).
133.
S.
Awtar
, “
Synthesis and analysis of parallel kinematic XY flexure mechanisms
,”
Sc.D. thesis
(
Massachusetts Institute of Technology
,
Cambridge, MA
,
2004
).
134.
N. B.
Hubbard
,
M. L.
Culpepper
, and
L. L.
Howell
, “
Actuators for micropositioners and nanopositioners
,”
Appl. Mech. Rev.
59
(
6
),
324
334
(
2006
).
135.
Y. J.
Choi
,
S. V.
Sreenivasan
, and
B. J.
Choi
, “
Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism
,”
Mech. Mach. Theory
43
,
724
737
(
2008
).
136.
H. S.
Tzou
,
H. J.
Lee
, and
S. M.
Arnold
, “
Smart materials, precision sensors/actuators, smart structures, and structronic systems
,”
Mech. Adv. Mater. Struct.
11
,
367
393
(
2004
).
137.
X.
Xiao
,
Y.
Li
, and
S.
Xiao
, “
Development of a novel large stroke 2-DOF micromanipulator for micro/nano manipulation
,”
Microsyst. Technol.
23
,
2993
3003
(
2017
).
138.
T.
Xie
,
C.
Wang
,
C.
Yu
, and
M.
Xiong
, “
Design of large-stroke and high-resolution drive system based on giant magnetostrictive material
,”
Int. J. Precis. Eng. Manuf.
22
(
5
),
799
811
(
2021
).
139.
C.
Rong
,
Z.
He
,
D.
Li
,
Z.
Yang
, and
G.
Xue
, “
Dynamic modeling and analysis of stack giant magnetostrictive actuator
,”
Sens. Actuators, A
276
,
205
218
(
2018
).
140.
J.
Shang
,
Y.
Tian
,
Z.
Li
,
F.
Wang
, and
K.
Cai
, “
A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism
,”
Rev. Sci. Instrum.
86
(
9
),
095001
(
2015
).
141.
J. A.
Yeh
,
C. N.
Chen
, and
Y. S.
Lui
, “
Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension
,”
J. Manuf. Syst.
15
(
1
),
201
(
2004
).
142.
H.
Chang
,
H.
Zhao
,
F.
Ye
,
G.
Yuan
,
J.
Xie
,
M.
Kraft
, and
W.
Yuan
, “
A rotary comb-actuated microgripper with a large displacement range
,”
Microsyst. Technol.
20
(
1
),
119
126
(
2013
).
143.
M.
Verotti
,
A.
Dochshanov
, and
N. P.
Belfiore
, “
A comprehensive survey on microgrippers design: Mechanical structure
,”
J. Mech. Des.
139
,
060801
(
2017
).
144.
H.
Li
,
F.
Guo
,
Y.
Wang
,
Z.
Wang
,
C.
Li
,
M.
Ling
, and
G.
Hao
, “
Design and modeling of a compact compliant stroke amplification mechanism with completely distributed compliance for ground-mounted actuators
,”
Mech. Mach. Theory
167
,
104566
(
2022
).
145.
X.
Zhang
,
Y.
Zhang
, and
Q.
Xu
, “
Design and control of a novel piezo-driven XY parallel nanopositioning stage
,”
Microsyst. Technol.
23
,
1067
1080
(
2017
).
146.
G.
Gu
,
L.
Zhu
,
C.
Su
,
H.
Ding
, and
S.
Fatikow
, “
Modeling and control of piezo-actuated nanopositioning stages: A survey
,”
IEEE Trans. Autom. Sci. Eng.
13
(
1
),
313
332
(
2016
).
147.
Y. K.
Yong
,
S. O. R.
Moheimani
,
B. J.
Kenton
, and
K. K.
Leang
, “
High-speed flexure-guided nanopositioning: Mechanical design and control issues
,”
Rev. Sci. Instrum.
83
,
121101
(
2012
).
148.
A.
Aabid
,
M. A.
Raheman
,
Y. E.
Ibrahim
,
A.
Anjum
,
M.
Hrairi
,
B.
Parveez
,
N.
Parveen
, and
J.
Mohammed Zayan
, “
A Systematic review of piezoelectric materials and energy harvesters for industrial applications
,”
Sensors
21
,
4145
(
2021
).
149.
S.
Devasia
,
E.
Eleftheriou
, and
S. O. R.
Moheimani
, “
A survey of control issues in nanopositioning
,”
IEEE Trans. Control Syst. Technol.
15
(
5
),
802
823
(
2007
).
150.
T. L.
Jordan
and
Z.
Ounaies
,
Piezoelectric Ceramics Characterization
(
Institute For Computer Applications In Science And Engineering
,
Hampton, VA
,
2001
).
151.
S. K.
Das
,
H. R.
Pota
, and
I. R.
Petersen
, “
Intelligent tracking control system for fast image scanning of atomic force microscopes, chaos modeling and control systems design
,” in
Studies in Computational Intelligence
(
Springer
,
2015
), pp.
351
391
.
152.
S. O. R.
Moheimani
, “
Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges
,”
Rev. Sci. Instrum.
79
,
071101
(
2008
).
153.
B.
Bhikkaji
and
S.
Moheimani
, “
Integral resonant control of a piezoelectric tube actuator for fast nanoscale positioning
,”
IEEE/Trans. Mechatron.
13
(
5
),
530
537
(
2008
).
154.
S.
Mohith
,
A. R.
Upadhya
,
K. P.
Navin
,
S. M.
Kulkarni
, and
M.
Rao
, “
Recent trends in piezoelectric actuators for precision motion and their applications: A review
,”
Smart Mater. Struct.
30
(
1
),
013002
(
2021
).
155.
B.
Arda Gozen
and
O.
Burak Ozdoganlar
, “
Characterization of three-dimensional dynamics of piezo-stack actuators
,”
Mech. Syst. Signal Proc.
31
,
268
283
(
2012
).
156.
Y. K.
Yong
, “
Preloading piezoelectric stack actuators in high-speed nanopositioning systems
,”
Front. Mech. Eng.
2
(
8
),
1
9
(
2016
).
157.
P. M.
Chaplya
,
M.
Mitrovic
,
G. P.
Carman
, and
F. K.
Straub
, “
Durability properties of piezoelectric stack actuators under combined electromechanical loading
,”
J. Appl. Phys.
100
(
12
),
124111
(
2006
).
158.
R.
Wang
and
X.
Zhang
, “
Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform
,”
Front. Mech. Eng.
10
(
1
),
20
36
(
2015
).
159.
T.
Lu
,
D. C.
Handley
,
Y.
Kuan Yong
, and
C.
Eales
, “
A three-DOF compliant micromotion stage with flexure hinges
,”
Ind. Robot.
31
(
4
),
355
361
(
2004
).
160.
S.
Baek
,
C.
Han
,
C.
Lee
, and
M.
Noh
, “
Design of a preload device for PZT actuator using permanent magnets
,”
IEEE Trans. Magn.
39
(
5
),
2965
2967
(
2003
).
161.
D. E.
Heverly
,
K. W.
Wang
, and
E. C.
Smith
, “
Dual-stack piezoelectric device with bidirectional actuation and improved performance
,”
J. Intell. Mater. Syst. Struct.
15
(
7
),
565
574
(
2004
).
162.
B. J.
Kenton
and
K. K.
Leang
, “
Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner
,”
IEEE/Trans. Mechatron.
17
(
2
),
356
369
(
2012
).
163.
Y.
Zhang
,
M.
Wang
,
Y.
Cheng
,
D.
Zheng
, and
Y.
Peng
, “
A stick-slip/inchworm hybrid rotary piezo motor based on a symmetric triangular driving mechanism
,”
Appl. Phys. Lett.
115
,
131904
(
2019
).
164.
M.
Ling
, “
A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers
,”
Mech. Syst. Signal Proc.
119
,
486
500
(
2019
).
165.
M.
Ling
,
J.
Cao
,
Z.
Jiang
, and
J.
Lin
, “
Modular kinematics and statics modeling for precision positioning stage
,”
Mech. Mach. Theory
107
,
274
282
(
2017
).
166.
B.
Ding
,
Z.
Yang
, and
Y.
Li
, “
Design of flexure-based modular architecture micro-positioning stage
,”
Microsyst. Technol.
26
(
9
),
2893
2901
(
2020
).
167.
M.
Sun
,
W.
Huang
,
Y.
Wang
,
Q.
Lu
, and
Z.
Su
, “
Research on a novel non-resonant piezoelectric linear motor with lever amplification mechanism
,”
Sens. Actuators, A
261
,
302
310
(
2017
).
168.
Y.
Tian
,
B.
Shirinzadeh
,
D.
Zhang
,
X.
Liu
, and
D.
Chetwynd
, “
Design and forward kinematics of the compliant micro-manipulator with lever mechanisms
,”
Precis. Eng.
33
(
4
),
466
475
(
2009
).
169.
J. W.
Lee
,
Y. C.
Li
,
K. S.
Chen
, and
Y. H.
Liu
, “
Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage
,”
Precis. Eng.
45
,
374
386
(
2016
).
170.
F.
Chen
,
Q.
Zhang
,
Y.
Gao
, and
W.
Dong
, “
A review on the flexure-based displacement amplification mechanisms
,”
IEEE Access
8
,
205919
205937
(
2020
).
171.
X.
Li
and
Y.
Li
, “
Design and analysis of a 2-DOF micro-motion stage based on differential amplifier
,” in
2013 13th IEEE International Conference on Nanotechnology, August
(
IEEE
,
2013
), pp.
472
477
.
172.
C.
Lin
,
Z.
Shen
,
Z.
Wu
, and
J.
Yu
, “
Kinematic characteristic analysis of a micro-/nano positioning stage based on bridge-type amplifier
,”
Sens. Actuators, A
271
,
230
242
(
2018
).
173.
N.
Lobontiu
and
E.
Garcia
, “
Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms
,”
Comput. Struct.
81
,
2797
2810
(
2003
).
174.
H.
Ma
,
S.
Yao
,
L.
Wang
, and
Z.
Zhong
, “
Analysis of the displacement amplification ratio of bridge-type flexure hinge
,”
Sens. Actuators, A
132
,
730
736
(
2006
).
175.
K.
Qi
,
Y.
Xiang
,
C.
Fang
,
Y.
Zhang
, and
C.
Yu
, “
Analysis of the displacement amplification ratio of bridge-type mechanism
,”
Mech. Mach. Theory
87
,
45
56
(
2015
).
176.
Q.
Xu
and
Y.
Li
, “
Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier
,”
Mech. Mach. Theory
46
,
183
200
(
2011
).
177.
M.
Muraoka
and
S.
Sanada
, “
Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism
,”
Sens. Actuators, A
157
(
1
),
84
90
(
2010
).
178.
M.
Ling
,
L.
Yuan
,
Z.
Luo
,
T.
Huang
, and
X.
Zhang
, “
Enhancing dynamic bandwidth of amplified piezoelectric actuators by a hybrid lever and bridge-type compliant mechanism
,”
Actuators
11
(
5
),
134
(
2022
).
179.
Y.
Qin
,
Y.
Tian
,
B.
Shirinzadeh
, and
D.
Zhang
, “
Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell Mechanisms
,”
J. Mech. Des.
135
,
101004
(
2013
).
180.
W.
Zhu
,
Z.
Zhu
,
Y.
Shi
,
X.
Chen
,
Y.
He
,
K. F.
Ehmann
, and
B.
Ju
, “
A novel piezoelectrically actuated 2-DoF compliant micro/nano-positioning stage with multi-level amplification
,”
Rev. Sci. Instrum.
87
(
10
),
105006
(
2016
).
181.
R. F.
Fung
,
M. H.
Weng
, and
Y. S.
Kung
, “
FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism
,”
Mech. Syst. Signal Proc.
23
(
8
),
2671
2686
(
2009
).
182.
X.
Lu
,
Q.
Gao
,
Y.
Li
,
Y.
Yu
,
X.
Zhang
,
G.
Qiao
, and
T.
Cheng
, “
A linear piezoelectric stick-slip actuator via triangular displacement amplification mechanism
,”
IEEE Access
8
,
6515
6522
(
2020
).
183.
X.
Liu
,
W.
Huang
, and
Y.
Wang
, “
A novel 2D piezo-nanopositioning stage based on triangle amplifier mechanism
,” in
IEEE 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Shanxi, China, 21–24 October
(
IEEE
,
2016
), Vol.
314-318
.
184.
X.
Sun
,
W.
Chen
,
Y.
Tian
,
S.
Fatikow
,
R.
Zhou
,
J.
Zhang
, and
M.
Mikczinski
, “
A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation
,”
Rev. Sci. Instrum.
84
,
085002
(
2013
).
185.
M.
Ling
,
C.
Zhang
, and
L.
Chen
, “
Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency
,”
Precis. Eng.
77
,
77
89
(
2022
).
186.
X.
Shen
,
L.
Zhang
, and
D.
Qiu
, “
A lever-bridge combined compliant mechanism for translation amplification
,”
Precis. Eng.
67
,
383
392
(
2021
).
187.
X.
Chen
,
Z.
Deng
,
S.
Hu
,
J.
Gao
, and
X.
Gao
, “
Design of a compliant mechanism based four-stage amplification piezoelectric driven asymmetric microgripper
,”
Micromachines
11
(
1
),
25
(
2019
).
188.
L.
Yuanqiang
and
L.
Wangyu
, “
Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate
,”
Mech. Mach. Theory
80
,
151
165
(
2014
).
189.
P.
Liu
and
P.
Yan
, “
A modified pseudo-rigid-body modeling approach for compliant mechanisms with fixed-guided beam flexures
,”
Mech. Sci.
8
(
2
),
359
368
(
2017
).
190.
Q.
Xu
, “
Design, testing and precision control of a novel long-stroke flexure micropositioning system
,”
Mech. Mach. Theory
70
,
209
224
(
2013
).
191.
S.
Wan
and
Q.
Xu
, “
Design and analysis of a new compliant XY micropositioning stage based on Roberts mechanism
,”
Mech. Mach. Theory
95
,
125
139
(
2016
).
192.
L. A.
Shaw
,
S.
Chizari
,
M.
Dotson
,
Y.
Song
, and
J. B.
Hopkins
, “
Compliant rolling-contact architected materials for shape reconfigurability
,”
Nat. Commun.
9
(
1
),
4594
(
2018
).
193.
B.
Haghpanah
,
L.
Salari-Sharif
,
P.
Pourrajab
,
J.
Hopkins
, and
L.
Valdevit
, “
Multistable shape-reconfigurable architected materials
,”
Adv. Mater.
28
(
36
),
7915
7920
(
2016
).
194.
N. T.
Tran
,
M. P.
Dang
, and
T. P.
Dao
, “
Design and optimization of a new large stroke micropositioner based on cricket-mimicked bistable mechanism for potential application in polishing
,”
Int. J. Adv. Manuf. Technol.
127
,
123
149
(
2023
).
195.
B.
Ding
,
J.
Zhao
, and
Y.
Li
, “
Design of a spatial constant-force end-effector for polishing/deburring operations
,”
Int. J. Adv. Manuf. Technol.
116
(
11-12
),
3507
3515
(
2021
).
196.
B.
Ding
,
X.
Li
,
S. C.
Chen
, and
Y.
Li
, “
Modular quasi-zero-stiffness isolator based on compliant constant-force mechanisms for low-frequency vibration isolation
,”
J. Vib. Control
(published online)
(
2023
).
197.
J.
Ling
,
T.
Ye
,
Z.
Feng
,
Y.
Zhu
,
Y.
Li
, and
X.
Xiao
, “
A survey on synthesis of compliant constant force/torque mechanisms
,”
Mech. Mach. Theory
176
,
104970
(
2022
).
198.
B.
Ding
,
X.
Li
, and
Y.
Li
, “
Configuration design and experimental verification of a variable constant-force compliant mechanism
,”
Robotica
40
(
10
),
3463
3475
(
2022
).
199.
A.
Farzaneh
,
N.
Pawar
,
C. M.
Portela
, and
J. B.
Hopkins
, “
Sequential metamaterials with alternating Poisson’s ratios
,”
Nat. Commun.
13
(
1
),
1041
(
2022
).
200.
E.
Boatti
,
N.
Vasios
, and
K.
Bertoldi
, “
Origami metamaterials for tunable thermal expansion
,”
Adv. Mater.
29
(
26
),
1700360
(
2017
).
201.
S.
Chizari
,
L. A.
Shaw
, and
J. B.
Hopkins
, “
Simultaneous printing and deformation of microsystems via two-photon lithography and holographic optical tweezers
,”
Mater. Horiz.
6
(
2
),
350
355
(
2019
).
202.
D.
Han
,
C.
Yang
,
N. X.
Fang
, and
H.
Lee
, “
Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control
,”
Addit. Manuf.
27
,
606
615
(
2019
).
203.
F.
Han
,
S.
Gu
,
A.
Klimas
,
N.
Zhao
,
Y.
Zhao
, and
S. C.
Chen
, “
Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly
,”
Science
378
(
6626
),
1325
1331
(
2022
).
You do not currently have access to this content.