Social progress is inseparable from the utilization of energy, signals of extreme consumption of fossil energy and energy crisis appear frequently around the world. Human beings are paying more and more attention to new technologies and the sustainable development of energy collection and conversion. The emergence of piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms provides a variety of effective methods for new environmental energy collection and conversion technologies. Among them, the piezoelectric–electromagnetic hybrid energy harvester (P-EHEH) has been widely studied due to its high output power, simple structure, and easy miniaturization. Continuous progress has been made in the research of P-EHEH through theoretical exploration, structural optimization, and performance improvement. This Review focuses on the review of P-EHEH at the application level. A detailed introduction summarizes the research status of P-EHEH applied to human body devices, monitoring sensors, and power supply devices, as well as the development status of back-end electronic modules and interface circuits. The future challenges and development prospects of P-EHEH are anticipated.

1.
A.
Agudelo
,
A.
Valero
, and
S.
Uson
, “
The fossil trace of CO2 emissions in multi-fuel energy systems
,”
Energy
58
,
236
246
(
2013
).
2.
M.
Balat
, “
Status of fossil energy resources: A global perspective
,”
Energy Sources, Part B
2
(
1
),
31
47
(
2007
).
3.
S.
Boyle
, “
A global fossil free-energy scenario—Towards climate stabilization
,”
Energy Policy
22
(
2
),
106
109
(
1994
).
4.
F.
Martins
,
C.
Felgueiras
,
M.
Smitkova
, and
N.
Caetano
, “
Analysis of fossil fuel energy consumption and environmental impacts in European countries
,”
Energies
12
(
6
),
964
(
2019
).
5.
S. D.
Musa
,
T.
Zhonghua
,
A. O.
Ibrahim
, and
M.
Habib
, “
China’s energy status: A critical look at fossils and renewable options
,”
Renewable Sustainable Energy Rev.
81
,
2281
2290
(
2018
).
6.
B.
Novotnik
,
A.
Nandy
,
S. V.
Venkatesan
,
J. R.
Radovic
,
J. D. l.
Fuente
,
S.
Nejadi
,
R. C.
Silva
,
A.
Kouris
,
V.
Thangadurai
,
S.
Bryant
,
K.
Karan
,
R.
Shor
,
M.
Strous
, and
S. R.
Larter
, “
Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere?
,”
Rev. Environ. Sci. Bio-Technol.
19
(
1
),
217
240
(
2020
).
7.
R.
Aryal
,
Z.
Dokou
,
R. B.
Malla
, and
A. C.
Bagtzoglou
, “
Design optimization of a small-scale hydropower harvesting device
,”
Struct. Multidiscip. Optim.
61
(
3
),
1303
1318
(
2020
).
8.
R. B.
Malla
,
B.
Shrestha
,
A.
Bagtzoglou
,
J.
Drasdis
, and
P.
Johnson
, “
Hydropower harvesting from a small scale reciprocating system
,”
Renewable Energy
36
(
5
),
1568
1577
(
2011
).
9.
R. T.
Aljadiri
,
L. Y.
Taha
, and
P.
Ivey
, “
Wind energy harvesting systems: A better understanding of their sustainability
,” in
3rd IEEE International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan
(
IEEE
,
2017
).
10.
X.-F.
He
and
J.
Gao
, “
Wind energy harvesting based on flow-induced-vibration and impact
,”
Microelectron. Eng.
111
,
82
86
(
2013
).
11.
C.
Zhang
,
Y.
Liu
,
B.
Zhang
,
O.
Yang
,
W.
Yuan
,
L.
He
,
X.
Wei
,
J.
Wang
, and
Z. L.
Wang
, “
Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system
,” Figshare,
2021
.
12.
M.
Hassan
and
A.
Bermak
, “
Solar harvested energy prediction algorithm for wireless sensors
,” in
4th Asia Symposium on Quality Electronic Design (ASQED), Malaysia
(
IEEE
,
2012
).
13.
G.
Arora
,
S.
Som
,
A.
Rana
,
A.
Kumar
, and
R.
Gupta
, “
System for geothermal energy harvesting, has cooling fan which is optionally used to provide additional air flow for additional cooling and direct current (DC)-DC voltage stabilizer that rectifies that electricity is stored in batteries for future use
,” University Amity.
14.
A.
Sentchev
,
J.
Thiebot
,
A.-C.
Bennis
, and
M.
Piggott
, “
New insights on tidal dynamics and tidal energy harvesting in the Alderney Race
,”
Philos. Trans. R. Soc., A
378
(
2178
),
20190490
(
2020
).
15.
H. L.
Joo
,
H. Y.
Jin
,
S. C.
Hyun
,
H. P.
Seon
,
S. Y.
Kwang
,
Y. Y.
Dae
, and
H. S.
Seung
, “
Piezoelectric energy harvest system for washing clothes, has piezoelectricity energy harvest device that is laminated with poly vinylidene fluoride film and body supporting part is installed in separate space of polymer film
,” University Sogang Res Found; University Yonsei Ind Academic Coop Found.
16.
H. K.
Jun
and
T. Y.
Seong
, “
Piezoelectricity harvesting device has bottom electrode layer that is provided with oxide layer, where oxide layer is formed on upper portion of metallic layer and top electrode layer is formed in upper portion of bottom electrode layer
,” University Korea Res & Business Found.
17.
H. S.
Tae
,
H.
Sinichi
,
K. J.
Hyung
,
B. K.
Se
, and
S.
Daniel
, “
Piezoelectricity harvesting system has piezoelectric element that is equipped in movable structure with external force, so that external force is delivered to movable structure for generating electric power
,” Hyu Holdings, Seedenertech Co Ltd.
18.
I.
Ahmad
,
L. M.
Hee
,
A. M.
Abdelrhman
,
S. A.
Imam
, and
M. S.
Leong
, “
Hybrid vibro-acoustic energy harvesting using electromagnetic transduction for autonomous condition monitoring system
,”
Energy Convers. Manage.
258
,
115443
(
2022
).
19.
J.
Cuji
,
L.
Mendoza
,
G.
Brito
, and
C.
Gordon
, “
Portable electromagnetic energy harvesting system
,” in
1st Congress on Sustainability, Energy and City (CSECity)
(
University Tecnologica Indoamerica
,
Ambato, Ecuador
,
2021
).
20.
Z. Q.
Liu
,
S. Y.
Li
,
S. Q.
Lin
,
Y. X.
Shi
,
P.
Yang
,
X. Y.
Chen
, and
Z. L.
Wang
, “
Crystallization-induced shift in a triboelectric series and even polarity reversal for elastic triboelectric materials
,”
Nano Lett.
22
(
10
),
4074
4082
(
2022
).
21.
S. H.
Shin
,
Y. E.
Bae
,
H. K.
Moon
,
J.
Kim
,
S. H.
Choi
,
Y.
Kim
,
H. J.
Yoon
,
M. H.
Lee
, and
J.
Nah
, “
Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting
,”
ACS Nano
11
(
6
),
6131
6138
(
2017
).
22.
B.
Toron
,
K.
Mistewicz
,
M.
Jesionek
,
M.
Koziol
,
M.
Zubko
, and
D.
Stroz
, “
A new hybrid piezo/triboelectric SbSeI nanogenerator
,”
Energy
238
,
122048
(
2022
).
23.
D.
Yamane
,
K.
Tamura
,
K.
Nota
,
R.
Iwakawa
,
C. Y.
Lo
,
K.
Miwa
, and
S.
Ono
, “
Contactless electrostatic vibration energy harvesting using electric double layer electrets
,”
Sensors Mater.
34
(
5
),
1869
1877
(
2022
).
24.
O.
Guerri
,
A.
Dali
,
S. M.
Boudia
, and
N.
Yassaa
, “
Performance evaluation of a wind farm using different power density distributions
,”
Energy Sources, Part A
10
,
1
(
2020
).
25.
H. K.
Ghritlahre
,
M.
Verma
,
J. S.
Parihar
,
D. S.
Mondloe
, and
S.
Agrawal
, “
A detailed review of various types of solar air heaters performance
,”
Sol. Energy
237
,
173
195
(
2022
).
26.
N.
Khan
,
A.
Kalair
,
N.
Abas
, and
A.
Haider
, “
Review of ocean tidal, wave and thermal energy technologies
,”
Renewable Sustainable Energy Rev.
72
,
590
604
(
2017
).
27.
A. Z.
Sahin
and
B. S.
Yilbas
, “
Thermodynamic irreversibility and performance characteristics of thermoelectric power generator
,”
Energy
55
,
899
904
(
2013
).
28.
S.
Ahmed
,
M. T.
Akhtar
, and
X.
Zhang
, “
Online acoustic feedback mitigation with improved noise-reduction performance in active noise control systems
,”
IET Signal Process.
7
(
6
),
505
514
(
2013
).
29.
B. R.
Ringeisen
,
E.
Henderson
,
P. K.
Wu
,
J.
Pietron
,
R.
Ray
,
B.
Little
,
J. C.
Biffinger
, and
J. M.
Jones-Meehan
, “
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10
,”
Environ. Sci. Technol.
40
(
8
),
2629
(
2013
).
30.
K.
Lyu
,
H. P.
Chen
,
Z. G.
Liu
,
B. Q.
Zhang
, and
R. L.
Wang
, “
3D human motion prediction: A survey
,”
Neurocomputing
489
,
345
365
(
2022
).
31.
C. D.
Wang
,
Y.
Li
,
Y. S.
Chui
,
Q. H.
Wu
,
X. F.
Chen
, and
W. J.
Zhang
, “
Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries
,”
Nanoscale
5
(
21
),
10599
10604
(
2013
).
32.
Y.
Li
,
K. L.
Liu
,
A. M.
Foley
,
A.
Zulke
,
M.
Berecibar
,
E.
Nanini-Maury
,
J.
Van Mierlo
, and
H. E.
Hoster
, “
Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
,”
Renewable Sustainable Energy Rev.
113
,
109254
(
2019
).
33.
T.
Ibn-Mohammed
,
S. C. L.
Koh
,
I. M.
Reaney
,
A.
Acquaye
,
G.
Schileo
,
K. B.
Mustapha
, and
R.
Greenough
, “
Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies
,”
Renewable Sustainable Energy Rev.
80
,
1321
1344
(
2017
).
34.
J. W.
Zhou
,
L. P.
He
,
L.
Liu
,
G.
Yu
,
X. F.
Gu
, and
G. M.
Cheng
, “
Design and research of hybrid piezoelectric-electromagnetic energy harvester based on magnetic couple suction-repulsion motion and centrifugal action
,”
Energy Convers. Manage.
258
,
115504
(
2022
).
35.
J. W.
Zhou
,
L. P.
He
,
G.
Yu
,
L.
Liu
,
X. F.
Gu
,
Y. C.
Wang
, and
G. M.
Cheng
, “
Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure
,”
Renewable Energy
185
,
959
969
(
2022
).
36.
B.
Maamer
,
A.
Boughamoura
,
A.
El-Bab
,
L. A.
Francis
, and
F.
Tounsi
, “
A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes
,”
Energy Convers. Manage.
199
,
111973
(
2019
).
37.
M.
Al Ahmad
, “
Piezoelectric water drop energy harvesting
,”
J. Electron. Mater.
43
(
2
),
452
458
(
2014
).
38.
M.
Ignat
,
G.
Zarnescu
, and
A. L.
Catanescu
, “
Piezoelectric microgenerators for body energy harvesting
,”
J. Optoelectron. Adv.
13
(
7–8
),
1026
1029
(
2011
).
39.
M. A.
Ilyas
and
J.
Swingler
, “
Piezoelectric energy harvesting from raindrop impacts
,”
Energy
90
,
796
806
(
2015
).
40.
H. S.
Kim
,
J. H.
Kim
, and
J.
Kim
, “
A review of piezoelectric energy harvesting based on vibration
,”
Int. J. Precis. Eng. Manuf.
12
(
6
),
1129
1141
(
2011
).
41.
J. W.
Moon
,
H. J.
Jung
,
K. H.
Baek
,
D.
Song
,
S. B.
Kim
,
J. H.
Kim
, and
T. H.
Sung
, “
Optimal design and application of a piezoelectric energy harvesting system using multiple piezoelectric modules
,”
J. Electroceram.
32
(
4
),
396
403
(
2014
).
42.
K.
Uchino
, “
Piezoelectric energy harvesting systems-essentials to successful developments
,”
Energy Technol.
6
(
5
),
829
848
(
2018
).
43.
F.
Eichhorn
,
S.
Kellermann
,
U.
Betke
, and
T.
Fey
, “
Phase evolution, filler-matrix interactions, and piezoelectric properties in lead zirconate titanate (PZT)-filled polymer-derived ceramics (PDCs)
,”
Materials
13
(
7
),
1520
(
2020
).
44.
L. K.
Wu
,
Z. N.
Jin
,
Y. L.
Liu
,
H. M.
Ning
,
X. Y.
Liu
,
Alamusi
, and
N.
Hu
, “
Recent advances in the preparation of PVDF-based piezoelectric materials
,”
Nanotechnol. Rev.
11
(
1
),
1386
1407
(
2022
).
45.
C. G.
Zhang
, “
Simulation analysis of bionic robot fish based on MFC materials
,”
Math. Probl. Eng.
2019
,
2720873
.
46.
A.
Jain
,
K. J.
Prashanth
,
A. K.
Sharma
,
A.
Jain
, and
R.
Pn
, “
Dielectric and piezoelectric properties of PVDF/PZT composites: A review
,”
Polym. Eng. Sci.
55
(
7
),
1589
1616
(
2015
).
47.
C. H.
Tsai
,
C. H.
Chuang
,
H. H.
Tsai
,
J. D.
Lee
,
D.
Chang
,
H. J.
Lin
, and
T. H.
Chuang
, “
Materials characteristics of Ag-alloy wires and their applications in advanced packages
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
6
(
2
),
298
305
(
2016
).
48.
H. W.
Kwon
and
M. S.
Kang
, “
Prospect of developing Nd-Fe-B-type magnet with high electrical resistivity
,”
Rare Met.
39
(
1
),
2
12
(
2020
).
49.
B.
Ambrozkiewicz
,
G.
Litak
, and
P.
Wolszczak
, “
Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy
,”
Appl. Sci.
10
(
2
),
671
(
2020
).
50.
S. H.
Pan
and
Z. N.
Zhang
, “
Fundamental theories and basic principles of triboelectric effect: A review
,”
Friction
7
(
1
),
2
17
(
2019
).
51.
Y. S.
Choi
and
S.
Kar-Narayan
, “
Nylon-11 nanowires for triboelectric energy harvesting
,”
Ecomat
2
(
4
),
e12063
(
2020
).
52.
X.
Li
and
Y.
Sun
, “
An SSHI rectifier for triboelectric energy harvesting
,”
IEEE Trans. Power Electron.
35
(
4
),
3663
3678
(
2020
).
53.
H.
Phan
,
D. M.
Shin
,
S.
Heon Jeon
,
T.
Young Kang
,
P.
Han
,
G.
Han Kim
,
H.
Kook Kim
,
K.
Kim
,
Y. H.
Hwang
, and
S.
Won Hong
, “
Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy
,”
Nano Energy
33
,
476
484
(
2017
).
54.
R.
Dharmasena
,
K.
Jayawardena
,
C. A.
Mills
,
R. A.
Dorey
, and
S. R. P.
Silva
, “
A unified theoretical model for Triboelectric Nanogenerators
,”
Nano Energy
48
,
391
400
(
2018
).
55.
W.
Harmon
,
H. Y.
Guo
,
D.
Bamgboje
,
T. S.
Hu
, and
Z. L.
Wang
, “
Timing strategy for boosting energy extraction from triboelectric nanogenerators
,”
Nano Energy
85
,
105956
(
2021
).
56.
S. M.
Niu
,
Y.
Liu
,
X. Y.
Chen
,
S. H.
Wang
,
Y. S.
Zhou
,
L.
Lin
,
Y. N.
Xie
, and
Z. L.
Wang
, “
Theory of freestanding triboelectric-layer-based nanogenerators
,”
Nano Energy
12
,
760
774
(
2015
).
57.
J.
Peng
,
S. D.
Kang
, and
G. J.
Snyder
, “
Optimization principles and the figure of merit for triboelectric generators
,”
Sci. Adv.
3
(
12
),
eaap8576
(
2017
).
58.
A.
Crovetto
,
F.
Wang
, and
O.
Hansen
, “
Modeling and optimization of an electrostatic energy harvesting device
,”
J. Microelectromech. Syst.
23
(
5
),
1141
1155
(
2014
).
59.
A. C. M.
de Queiroz
, “
Electrostatic energy harvesting using capacitive generators without control circuits
,”
Analog Integr. Circuits Signal Process.
85
(
1
),
57
64
(
2015
).
60.
M.
Lallart
,
S.
Pruvost
, and
D.
Guyomar
, “
Electrostatic energy harvesting enhancement using variable equivalent permittivity
,”
Phys. Lett. A
375
(
45
),
3921
3924
(
2011
).
61.
M.
Lallart
,
L. Q.
Wang
, and
L.
Petit
, “
Enhancement of electrostatic energy harvesting using self-similar capacitor patterns
,”
J. Intell. Mater. Syst. Struct.
27
(
17
),
2385
2394
(
2016
).
62.
E.
Yildirim
and
H.
Kulah
, “
Electrostatic energy harvesting by droplet-based multi-phase microfluidics
,”
Microfluid. Nanofluid.
13
(
1
),
107
111
(
2012
).
63.
L.
Zhai
,
L. X.
Gao
,
Z. Y.
Wang
,
K. J.
Dai
,
S.
Wu
, and
X. J.
Mu
, “
An energy harvester coupled with a triboelectric mechanism and electrostatic mechanism for biomechanical energy harvesting
,”
Nanomaterials
12
(
6
),
933
(
2022
).
64.
L.
Zheng
,
Z. H.
Lin
,
G.
Cheng
,
W. Z.
Wu
,
X. N.
Wen
,
S. M.
Lee
, and
Z. L.
Wang
, “
Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy
,”
Nano Energy
9
,
291
300
(
2014
).
65.
A.
Bialas
, “
Ontological approach to the motion sensor security development
,”
Przegl. Elektrotech.
85
(
11
),
36
44
(
2009
).
66.
R.
Bogue
, “
Inspired by nature: Developments in biomimetic sensors
,”
Sensor Rev.
29
(
2
),
107
111
(
2009
).
67.
I. Y.
Park
,
Y.
Shimizu
,
K. N.
O’Connor
,
S.
Puria
, and
J. H.
Cho
, “
Comparisons of electromagnetic and piezoelectric floating-mass transducers in human cadaveric temporal bones
,”
Hear. Res.
272
(
1–2
),
187
192
(
2011
).
68.
R.
Hamid
and
M. R.
Yuce
, “
A wearable energy harvester unit using piezoelectric-electromagnetic hybrid technique
,”
Sens. Actuators, A
257
,
198
207
(
2017
).
69.
B.
Edwards
,
P. A.
Hu
, and
K. C.
Aw
, “
Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester
,”
Smart Mater. Struct.
25
(
5
),
055019
(
2016
).
70.
G. K.
Xu
,
S. Q.
Xiao
,
Y.
Li
, and
B. Z.
Wang
, “
Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite
,”
Phys. Lett. A
385
,
126959
(
2021
).
71.
M.
Iqbal
,
M. M.
Nauman
,
F. U.
Khan
,
P. E.
Abas
,
Q.
Cheok
,
A.
Iqbal
, and
B.
Aissa
, “
Multimodal hybrid piezoelectric-electromagnetic insole energy harvester using PVDF generators
,”
Electronics
9
(
4
),
635
(
2020
).
72.
U.
Guth
,
W.
Vonau
, and
J.
Zosel
, “
Recent developments in electrochemical sensor application and technology-a review
,”
Meas. Sci. Technol.
20
(
4
),
042002
(
2009
).
73.
J.
Kanungo
,
M.
Anderson
,
Z.
Darmastuti
,
S.
Basu
,
P. O.
Kall
,
L.
Ojamae
, and
A. L.
Spetz
, “
Development of SiC-FET methanol sensor
,”
Sens. Actuators, B
160
(
1
),
72
78
(
2011
).
74.
J.
Wang
,
J. P.
Wei
,
B.
Yang
,
Z. Y.
Gao
,
L. W.
Zhang
, and
X. F.
Yang
, “
The recent development of fiber-optic chemical sensor
,”
Spectrosc. Spectral Anal.
34
(
8
),
2035
2039
(
2014
).
75.
S. H.
Yan
,
Z. T.
Zhou
,
Y. D.
Yang
,
Q. W.
Leng
, and
W. S.
Zhao
, “
Developments and applications of tunneling magnetoresistance sensors
,”
Tsinghua Sci. Technol.
27
(
3
),
443
454
(
2022
).
76.
C.
Zheng
,
K.
Zhu
,
S.
Cardoso de Freitas
,
J. Y.
Chang
,
J. E.
Davies
,
P.
Eames
,
P. P.
Freitas
,
O.
Kazakova
,
C.
Kim
,
C. W.
Leung
,
S. H.
Liou
,
A.
Ognev
,
S. N.
Piramanayagam
,
P.
Ripka
,
A.
Samardak
,
K. H.
Shin
,
S. Y.
Tong
,
M. J.
Tung
,
S. X.
Wang
,
S. S.
Xue
,
X. L.
Yin
, and
P. W. T.
Pong
, “
Magnetoresistive sensor development roadmap (non-recording applications)
,”
IEEE Trans. Magn.
55
(
4
),
1
(
2019
).
77.
R.
Bogue
, “
Graphene sensors: A review of recent developments
,”
Sensor Rev.
34
(
3
),
233
238
(
2014
).
78.
M.
Coccia
,
S.
Roshani
, and
M.
Mosleh
, “
Scientific developments and new technological trajectories in sensor research
,”
Sensors
21
(
23
),
7803
(
2021
).
79.
C.
Connolly
, “
Developments in localisation sensor systems
,”
Sensor Rev.
28
(
2
),
98
101
(
2008
).
80.
R.
Okeya
,
M.
Aoyagi
,
T.
Takano
, and
H.
Tamura
, “
Development of electromagnetic and piezoelectric hybrid actuator system
,”
Sens. Actuators, A
200
,
155
161
(
2013
).
81.
D. A.
Zimnyakov
,
E. L.
Nikishin
,
M. V.
Pavlova
, and
A. V.
Suchilin
, “
Acousto-optical imaging of standing electromagnetic waves in multielement piezoelectric transducers of acoustoelectric devices
,”
Instrum. Exp. Techn.
57
(
6
),
702
705
(
2014
).
82.
M. J.
Zhang
and
S. W.
Or
, “
Phase-sensitive dc magnetometer based on magnetic-electromagnetic-magnetostrictive-piezoelectric heterostructure
,”
AIP Adv.
7
(
5
),
056642
(
2017
).
83.
J. Y.
Cho
,
J. Y.
Choi
,
S. W.
Jeong
,
J. H.
Ahn
,
W. S.
Hwang
,
H. H.
Yoo
, and
T. H.
Sung
, “
Design of hydro electromagnetic and piezoelectric energy harvesters for a smart water meter system
,”
Sens. Actuators, A
261
,
261
267
(
2017
).
84.
I.
Jung
,
J.
Choi
,
H. J.
Park
,
T. G.
Lee
,
S.
Nahm
,
H. C.
Song
,
S.
Kim
, and
C. Y.
Kang
, “
Design principles for coupled piezoelectric and electromagnetic hybrid energy harvesters for autonomous sensor systems
,”
Nano Energy
75
,
104921
(
2020
).
85.
P.
Li
,
S. Q.
Gao
, and
H. T.
Cai
, “
Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations
,”
Microsyst. Technol.
21
(
2
),
401
414
(
2015
).
86.
F. U.
Khan
and
Izhar
, “
Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion
,”
Rev. Sci. Instrum.
87
(
2
),
025003
(
2016
).
87.
O.
Foupouapouognigni
,
C.
Nono Dueyou Buckjohn
,
M.
Siewe Siewe
, and
C.
Tchawoua
, “
Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation
,”
Physica A
509
,
346
360
(
2018
).
88.
A.
Mohamed
,
S.
Ghosh
,
M.
Araque
,
D.
Datta
,
M.
Mazouchi
,
V.
Rane
,
M.
Dutta
, and
M. A.
Stroscio
, “
Nanomechanical systems with normalized and coupled acoustic and electromagnetic modes in piezoelectric structures
,”
Solid State Commun.
277
,
1
6
(
2018
).
89.
X. Y.
Zhou
,
S. Q.
Gao
,
H. P.
Liu
, and
L.
Jin
, “
Nonlinear hybrid piezoelectric and electromagnetic energy harvesting driven by colored excitation
,”
Energies
11
(
3
),
498
(
2018
).
90.
M.
Iqbal
and
F. U.
Khan
, “
Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications
,”
Energy Convers. Manage.
172
,
611
618
(
2018
).
91.
L. C.
Zhao
,
H. X.
Zou
,
G.
Yan
,
F. R.
Liu
,
T.
Tan
,
W. M.
Zhang
,
Z. K.
Peng
, and
G.
Meng
, “
A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester
,”
Appl. Energy
239
,
735
746
(
2019
).
92.
U.
Javed
and
A.
Abdelkefi
, “
Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations
,”
Nonlinear Dyn.
95
(
4
),
3309
3333
(
2019
).
93.
F. C.
Bolat
,
S.
Basaran
, and
S.
Sivrioglu
, “
Piezoelectric and electromagnetic hybrid energy harvesting with low-frequency vibrations of an aerodynamic profile under the air effect
,”
Mech. Syst. Signal Process.
133
,
106246
(
2019
).
94.
X.
Li
,
Z. Y.
Li
,
B. X.
Liu
,
J.
Zhang
, and
W. D.
Zhu
, “
Numerical research on a vortex shedding induced piezoelectric-electromagnetic energy harvester
,”
J. Intell. Mater. Syst. Struct.
33
(
1
),
105
120
(
2022
).
95.
B.
Yang
,
C.
Lee
,
W. L.
Kee
, and
S. P.
Lim
, “
Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms
,”
J. Micro/Nanolithogr., MEMS, MOEMS
9
(
2
),
023002
(
2010
).
96.
P.
Li
,
S. Q.
Gao
,
H. T.
Cai
, and
H. M.
Wang
, “
Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations
,”
Int. J. Precis. Eng. Manuf.
15
(
9
),
1915
1924
(
2014
).
97.
X. G.
Yang
,
Y. Y.
Wang
,
Y. Y.
Cao
,
S.
Liu
,
Z. H.
Zhao
, and
G. Y.
Dong
, “
A new hybrid piezoelectric-electromagnetic vibration-powered generator and its model and experiment research
,”
IEEE Trans. Appl. Supercond.
24
(
3
),
1
(
2014
).
98.
X.
Wang
,
X. Y.
Liang
,
Z. Y.
Hao
,
H. P.
Du
,
N.
Zhang
, and
M.
Qian
, “
Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits
,”
Mech. Syst. Signal Process.
72-73
,
906
924
(
2016
).
99.
W.
Chen
,
Y. L.
Cao
, and
J.
Xie
, “
Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid
,”
J. Mech. Sci. Technol.
29
(
10
),
4313
4318
(
2015
).
100.
L. C.
Deng
,
Z. Y.
Wen
, and
X. Q.
Zhao
, “
Theoretical and experimental studies on piezoelectric-electromagnetic hybrid vibration energy harvester
,”
Microsyst. Technol.
23
(
4
),
935
943
(
2017
).
101.
H. K.
Xia
,
R. W.
Chen
, and
L.
Ren
, “
Parameter tuning of piezoelectric-electromagnetic hybrid vibration energy harvester by magnetic force: Modeling and experiment
,”
Sens. Actuators, A
257
,
73
83
(
2017
).
102.
L. M.
Cao
,
Z. X.
Li
,
C.
Guo
,
P. P.
Li
,
X. Q.
Meng
, and
T. M.
Wang
, “
Design and test of the MEMS coupled piezoelectric-electromagnetic energy harvester
,”
Int. J. Precis. Eng. Manuf.
20
(
4
),
673
686
(
2019
).
103.
R. M.
Toyabur
,
M.
Salauddin
,
H.
Cho
, and
J. Y.
Park
, “
A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations
,”
Energy Convers. Manage.
168
,
454
466
(
2018
).
104.
X. M.
He
,
Q.
Wen
,
Y. F.
Sun
, and
Z. Y.
Wen
, “
A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
,”
Nano Energy
40
,
300
307
(
2017
).
105.
S.
Pyo
,
D. S.
Kwon
,
H. J.
Ko
,
Y.
Eun
, and
J.
Kim
, “
Frequency up-conversion hybrid energy harvester combining piezoelectric and electromagnetic transduction mechanisms
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
9
(
1
),
241
251
(
2022
).
106.
M.
Lallart
and
G.
Lombardi
, “
Synchronized switch harvesting on electromagnetic system: A nonlinear technique for hybrid energy harvesting based on active inductance
,”
Energy Convers. Manage.
203
,
112135
(
2020
).
107.
M. F.
Tang
,
H.
Cao
,
L. J.
Kong
,
A. L.
Azam
,
D. B.
Luo
,
Y. J.
Pan
, and
Z. T.
Zhang
, “
A hybrid kinetic energy harvester for applications in electric driverless buses
,”
Int. J. Mech. Sci.
223
,
107317
(
2022
).
108.
L. F.
Qi
,
H.
Li
,
X. P.
Wu
,
Z. T.
Zhang
,
W. J.
Duan
, and
M. Y.
Yi
, “
A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges
,”
Renewable Energy
178
,
1223
1235
(
2021
).
109.
Y. H.
Han
,
L. P.
He
,
X. T.
Zheng
,
R. H.
Hu
,
H.
Huang
, and
H. W.
Zhao
, “
Composite piezoelectric-electromagnetic synchronously powering and sensing device for vehicle monitoring
,”
Energy Convers. Manage.
286
,
117040
(
2023
).
You do not currently have access to this content.