We present the design and implementation of a measurement system that enables parallel drive and detection of small currents and voltages at numerous electrical contacts to a multi-terminal electrical device. This system, which we term a feedback lock-in, combines digital control-loop feedback with software-defined lock-in measurements to dynamically source currents and measure small, pre-amplified potentials. The effective input impedance of each current/voltage probe can be set via software, permitting any given contact to behave as an open-circuit voltage lead or as a virtually grounded current source/sink. This enables programmatic switching of measurement configurations and permits measurement of currents at multiple drain contacts without the use of current preamplifiers. Our 32-channel implementation relies on commercially available digital input/output boards, home-built voltage preamplifiers, and custom open-source software. With our feedback lock-in, we demonstrate differential measurement sensitivity comparable to a widely used commercially available lock-in amplifier and perform efficient multi-terminal electrical transport measurements on twisted bilayer graphene and SrTiO3 quantum point contacts. The feedback lock-in also enables a new style of measurement using multiple current probes, which we demonstrate on a ballistic graphene device.

1.
T. J.
Thornton
, “
Mesoscopic devices
,”
Rep. Prog. Phys.
58
,
311
364
(
1995
).
2.
R.
Burdett
, “
Amplitude modulated signals: The lock-in amplifier
,” in
Handbook of Measuring System Design
(
American Cancer Society
,
2005
).
3.
Z.
Iftikhar
 et al, “
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states
,”
Nature
526
,
233
236
(
2015
).
4.
R. K.
Kumar
 et al, “
Superballistic flow of viscous electron fluid through graphene constrictions
,”
Nat. Phys.
13
,
1182
(
2017
).
5.
N.
Nandi
 et al, “
Unconventional magneto-transport in ultrapure PdCoO2 and PtCoO2
,”
npj Quantum Mater.
3
,
1
6
(
2018
).
6.
M.
Serlin
 et al, “
Intrinsic quantized anomalous Hall effect in a moiré heterostructure
,”
Science
367
,
900
903
(
2020
).
7.
P. A.
Probst
and
A.
Jaquier
, “
Multiple‐channel digital lock‐in amplifier with PPM resolution
,”
Rev. Sci. Instrum.
65
,
747
750
(
1994
).
8.
G.
Gervasoni
 et al, “
A 12-channel dual-lock-in platform for magneto-resistive DNA detection with ppm resolution
,” in
2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings
(
IEEE
,
2014
), pp.
316
319
.
9.
H.
Wi
,
J.
Ko
, and
J.
Chung
, “
Multi-channel analog lock-in system for real-time motional Stark effect measurements
,”
Fusion Eng. Des.
159
,
111664
(
2020
).
10.
P. K.
Dixon
and
L.
Wu
, “
Broadband digital lock‐in amplifier techniques
,”
Rev. Sci. Instrum.
60
,
3329
3336
(
1989
).
11.
X.
Wang
, “
Sensitive digital lock‐in amplifier using a personal computer
,”
Rev. Sci. Instrum.
61
,
1999
2001
(
1990
).
12.
D.
Uhl
,
L.
Bruder
, and
F.
Stienkemeier
, “
A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy
,”
Rev. Sci. Instrum.
92
,
083101
(
2021
).
13.
A.
Nadgir
 et al, “
SILIA: Software implementation of a multi-channel, multi-frequency lock-in amplifier for spectroscopy and imaging applications
,”
Meas. Sci. Technol.
32
,
125501
(
2021
).
14.
A.
Chighine
 et al, “
An FPGA-based lock-in detection system to enable chemical species tomography using TDLAS
,” in
2015 IEEE International Conference on Imaging Systems and Techniques (IST)
(
IEEE
,
2015
), pp.
1
5
.
15.
G.
Gervasoni
,
M.
Carminati
, and
G.
Ferrari
, “
Switched ratiometric lock-in amplifier enabling sub-ppm measurements in a wide frequency range
,”
Rev. Sci. Instrum.
88
,
104704
(
2017
).
16.
G. C.
Giaconia
,
G.
Greco
,
L.
Mistretta
, and
R.
Rizzo
, “
Exploring FPGA‐based lock‐in techniques for brain monitoring applications
,”
Electronics
6
,
18
(
2017
).
17.
D.
Divakar
,
K.
Mahesh
,
M. M.
Varma
, and
P.
Sen
, “
FPGA-based lock-in amplifier for measuring the electrical properties of individual cells
,” in
2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
(
IEEE
,
2018
), pp.
1
5
.
18.
G. A.
Stimpson
,
M. S.
Skilbeck
,
R. L.
Patel
,
B. L.
Green
, and
G. W.
Morley
, “
An open-source high-frequency lock-in amplifier
,”
Rev. Sci. Instrum.
90
,
094701
(
2019
).
19.
C.
Zhang
,
H.
Liu
,
J.
Ge
, and
H.
Dong
, “
FPGA-based digital lock-in amplifier with high-precision automatic frequency tracking
,”
IEEE Access
8
,
123114
123122
(
2020
).
20.
M.
Carminati
and
G.
Scandurra
, “
Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation
,”
Rev. Sci. Instrum.
92
,
091501
(
2021
).
21.
M. D.
Schroer
,
M.
Jung
,
K. D.
Petersson
, and
J. R.
Petta
, “
Radio frequency charge parity meter
,”
Phys. Rev. Lett.
109
,
166804
(
2012
).
22.
D.
Razmadze
 et al, “
Radio-frequency methods for Majorana-based quantum devices: Fast charge sensing and phase-diagram mapping
,”
Phys. Rev. Appl.
11
,
064011
(
2019
).
23.
Y.
Cao
 et al, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
24.
L.
Balents
,
C. R.
Dean
,
D. K.
Efetov
, and
A. F.
Young
, “
Superconductivity and strong correlations in moiré flat bands
,”
Nat. Phys.
16
,
725
733
(
2020
).
25.
J.
Finney
 et al, “
Unusual magnetotransport in twisted bilayer graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2118482119
(
2022
).
26.
E.
Mikheev
,
I. T.
Rosen
,
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Clean ballistic quantum point contact in SrTiO3
,” arXiv:2110.11535 (
2021
).
27.
M.
Ben Shalom
 et al, “
Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene
,”
Nat. Phys.
12
,
318
322
(
2016
).
28.
C.
Kumar
 et al, “
Imaging hydrodynamic electrons flowing without Landauer-Sharvin resistance
,”
Nature
609
,
276
281
(
2022
).
29.
S.
De Franceschi
 et al, “
Out-of-equilibrium Kondo effect in a mesoscopic device
,”
Phys. Rev. Lett.
89
,
156801
(
2002
).
30.
R.
Leturcq
 et al, “
Probing the Kondo density of states in a three-terminal quantum ring
,”
Phys. Rev. Lett.
95
,
126603
(
2005
).
31.
J.
Gramich
,
A.
Baumgartner
, and
C.
Schönenberger
, “
Andreev bound states probed in three-terminal quantum dots
,”
Phys. Rev. B
96
,
195418
(
2017
).
32.
W.
Pouse
 et al, “
Quantum simulation of an exotic quantum critical point in a two-site charge Kondo circuit
,” arXiv:2108.12691 (
2022
).
33.
Z.
Fei
 et al, “
Edge conduction in monolayer WTe2
,”
Nat. Phys.
13
,
677
682
(
2017
).
34.
Goldhaber-Gordon Group
, “
Feedback Lockin v2
,” https://github.com/dgglab/Feedback-Lockin-v2 (
2022
).
You do not currently have access to this content.