Since their inception, velocity map imaging (VMI) techniques have received continued interest in their expansion from 2D to 3D momentum measurements through either reconstructive or direct methods. Recently, much work has been devoted to the latter of these by relating electron time-of-flight (TOF) to the third momentum component. The challenge is having a timing resolution sufficient to resolve the structure in the narrow (<10 ns) electron TOF spread. Here, we build upon the work in VMI lens design and 3D VMI measurement by using a plano–convex thick-lens (PCTL) VMI in conjunction with an event-driven camera (TPX3CAM) providing TOF information for high resolution 3D electron momentum measurements. We perform simulations to show that, with the addition of a mesh electrode to the thick-lens geometry, the resulting plano–convex electrostatic field extends the detectable electron cutoff energy range while retaining the high resolution. This design also extends the electron TOF range, allowing for a better momentum resolution along this axis. We experimentally demonstrate these capabilities by examining above-threshold ionization in xenon, where the apparatus is shown to collect electrons of energy up to ∼7 eV with a TOF spread of ∼30 ns, both of which are improved compared to a previous work by factors of ∼1.4 and ∼3.75, respectively. Finally, the PCTL-VMI is equipped with a coincident ion TOF spectrometer, which is shown to effectively extract unique 3D momentum distributions for different ionic species in a gas mixture. These techniques have the potential to lend themselves to more advanced measurements involving systems where the electron momentum distributions possess non-trivial symmetries.

1.
A. T. J. B.
Eppink
and
D. H.
Parker
, “
Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen
,”
Rev. Sci. Instrum.
68
,
3477
3484
(
1997
).
2.
B.
Ding
,
W.
Xu
,
R.
Wu
,
Y.
Feng
,
L.
Tian
,
X.
Li
,
J.
Huang
,
Z.
Liu
, and
X.
Liu
, “
A composite velocity map imaging spectrometer for ions and 1 keV electrons at the Shanghai soft X-ray free-electron laser
,”
Appl. Sci.
11
,
10272
(
2021
).
3.
P.
Zhang
,
M.
Li
,
S.
Luo
,
Y.
Zhou
,
Q.
Zhang
,
P.
Lan
, and
P.
Lu
, “
An aplanatic-lens velocity map imaging spectrometer with improved kinetic energy resolution for photoions
,”
Int. J. Mass Spectrom.
406
,
55
61
(
2016
).
4.
N. G.
Kling
,
D.
Paul
,
A.
Gura
,
G.
Laurent
,
S.
De
,
H.
Li
,
Z.
Wang
,
B.
Ahn
,
C. H.
Kim
,
T. K.
Kim
 et al, “
Thick-lens velocity-map imaging spectrometer with high resolution for high-energy charged particles
,”
J. Instrum.
9
,
P05005
(
2014
).
5.
S. J.
Kregel
,
G. K.
Thurston
,
J.
Zhou
, and
E.
Garand
, “
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
,”
J. Chem. Phys.
147
,
094201
(
2017
).
6.
J. J.
Lin
,
J.
Zhou
,
W.
Shiu
, and
K.
Liu
, “
Application of time-sliced ion velocity imaging to crossed molecular beam experiments
,”
Rev. Sci. Instrum.
74
,
2495
2500
(
2003
).
7.
S.
Kauczok
,
N.
Gödecke
,
A. I.
Chichinin
,
M.
Veckenstedt
,
C.
Maul
, and
K.-H.
Gericke
, “
Three-dimensional velocity map imaging: Setup and resolution improvement compared to three-dimensional ion imaging
,”
Rev. Sci. Instrum.
80
,
083301
(
2009
).
8.
U.
Ablikim
,
C.
Bomme
,
T.
Osipov
,
H.
Xiong
,
R.
Obaid
,
R. C.
Bilodeau
,
N. G.
Kling
,
I.
Dumitriu
,
S.
Augustin
,
S.
Pathak
 et al, “
A coincidence velocity map imaging spectrometer for ions and high-energy electrons to study inner-shell photoionization of gas-phase molecules
,”
Rev. Sci. Instrum.
90
,
055103
(
2019
).
9.
P.
Zhang
,
P.
Lan
,
Z.
Feng
,
Q.
Zhang
, and
P.
Lu
, “
Method to compensate the dispersion of kinetic energy resolution in a velocity map imaging spectrometer
,”
Meas. Sci. Technol.
25
,
105202
(
2014
).
10.
D.
Pengel
,
S.
Kerbstadt
,
D.
Johannmeyer
,
L.
Englert
,
T.
Bayer
, and
M.
Wollenhaupt
, “
Electron vortices in femtosecond multiphoton ionization
,”
Phys. Rev. Lett.
118
,
053003
(
2017
).
11.
J.
Maurer
,
D.
Dimitrovski
,
L.
Christensen
,
L. B.
Madsen
, and
H.
Stapelfeldt
, “
Molecular-frame 3D photoelectron momentum distributions by tomographic reconstruction
,”
Phys. Rev. Lett.
109
,
123001
(
2012
).
12.
L.
Dinu
,
A. T. J. B.
Eppink
,
F.
Rosca-Pruna
,
H. L.
Offerhaus
,
W. J.
van der Zande
, and
M. J. J.
Vrakking
, “
Application of a time-resolved event counting technique in velocity map imaging
,”
Rev. Sci. Instrum.
73
,
4206
4213
(
2002
).
13.
A. I.
Chichinin
,
T.
Einfeld
,
C.
Maul
, and
K.-H.
Gericke
, “
Three-dimensional imaging technique for direct observation of the complete velocity distribution of state-selected photodissociation products
,”
Rev. Sci. Instrum.
73
,
1856
1865
(
2002
).
14.
J.
Ullrich
,
R.
Moshammer
,
A.
Dorn
,
R.
Dörner
,
L. P. H.
Schmidt
, and
H.
Schmidt-Böcking
, “
Recoil-ion and electron momentum spectroscopy: Reaction-microscopes
,”
Rep. Prog. Phys.
66
,
1463
(
2003
).
15.
J.
Ullrich
,
R.
Moshammer
,
R.
Dörner
,
O.
Jagutzki
,
V.
Mergel
,
H.
Schmidt-Böcking
, and
L.
Spielberger
, “
Recoil-ion momentum spectroscopy
,”
J. Phys. B: At., Mol. Opt. Phys.
30
,
2917
(
1997
).
16.
R.
Dörner
,
V.
Mergel
,
O.
Jagutzki
,
L.
Spielberger
,
J.
Ullrich
,
R.
Moshammer
, and
H.
Schmidt-Böcking
, “
Cold target recoil ion momentum spectroscopy: A ‘momentum microscope’ to view atomic collision dynamics
,”
Phys. Rep.
330
,
95
192
(
2000
).
17.
L. A.
Shepp
and
B. F.
Logan
, “
The Fourier reconstruction of a head section
,”
IEEE Trans. Nucl. Sci.
21
,
21
43
(
1974
).
18.
R. N.
Strickland
and
D. W.
Chandler
, “
Reconstruction of an axisymmetric image from its blurred and noisy projection
,”
Appl. Opt.
30
,
1811
1819
(
1991
).
19.
C.
Smeenk
,
L.
Arissian
,
A.
Staudte
,
D. M.
Villeneuve
, and
P. B.
Corkum
, “
Momentum space tomographic imaging of photoelectrons
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
185402
(
2009
).
20.
C. R.
Gebhardt
,
T. P.
Rakitzis
,
P. C.
Samartzis
,
V.
Ladopoulos
, and
T. N.
Kitsopoulos
, “
Slice imaging: A new approach to ion imaging and velocity mapping
,”
Rev. Sci. Instrum.
72
,
3848
3853
(
2001
).
21.
S. K.
Lee
,
Y. F.
Lin
,
S.
Lingenfelter
,
L.
Fan
,
A. H.
Winney
, and
W.
Li
, “
Communication: Time- and space-sliced velocity map electron imaging
,”
J. Chem. Phys.
141
,
221101
(
2014
).
22.
TPX3CAM - Amsterdam Scientific Instruments TPX3CAM,
2022
.
23.
A.
Nomerotski
, “
Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
937
,
26
30
(
2019
).
24.
D. A.
Debrah
,
G. A.
Stewart
,
G.
Basnayake
,
A.
Nomerotski
,
P.
Svihra
,
S. K.
Lee
, and
W.
Li
, “
Developing a camera-based 3D momentum imaging system capable of 1 Mhits/s
,”
Rev. Sci. Instrum.
91
,
023316
(
2020
).
25.
C.
Cheng
,
G.
Moğol
,
T.
Weinacht
,
A.
Nomerotski
, and
C.
Trallero-Herrero
, “
3D velocity map imaging of electrons with TPX3CAM
,”
Rev. Sci. Instrum.
93
,
013003
(
2022
).
26.
A.
Zhao
,
M.
van Beuzekom
,
B.
Bouwens
,
D.
Byelov
,
I.
Chakaberia
,
C.
Cheng
,
E.
Maddox
,
A.
Nomerotski
,
P.
Svihra
,
J.
Visser
 et al, “
Coincidence velocity map imaging using TPX3CAM, a time stamping optical camera with 1.5 ns timing resolution
,”
Rev. Sci. Instrum.
88
,
113104
(
2017
).
27.
J.
Visser
,
M. v.
Beuzekom
,
H.
Boterenbrood
,
B. v. d.
Heijden
,
J. I.
Muñoz
,
S.
Kulis
,
B.
Munneke
, and
F.
Schreuder
, “
SPIDR: A read-out system for Medipix3 & Timepix3
,”
J. Instrum.
10
,
C12028
(
2015
).
28.
D.
Köhnke
,
K.
Eickhoff
,
T.
Bayer
, and
M.
Wollenhaupt
, “
Three-dimensional photoelectron holography with trichromatic polarization-tailored laser pulses
,”
J. Phys. B: At., Mol. Opt. Phys.
55
,
184003
(
2022
).
29.
D.
Ray
,
Z.
Chen
,
S.
De
,
W.
Cao
,
I.
Litvinyuk
,
A.-T.
Le
,
C.
Lin
,
M. F.
Kling
, and
C.
Cocke
, “
Momentum spectra of electrons rescattered from rare-gas targets following their extraction by one- and two-color femtosecond laser pulses
,”
Phys. Rev. A
83
,
013410
(
2011
).
30.
M.
Li
,
P.
Zhang
,
S.
Luo
,
Y.
Zhou
,
Q.
Zhang
,
P.
Lan
, and
P.
Lu
, “
Selective enhancement of resonant multiphoton ionization with strong laser fields
,”
Phys. Rev. A
92
,
063404
(
2015
).
31.
H.
Bromberger
,
C.
Passow
,
D.
Pennicard
,
R.
Boll
,
J.
Correa
,
L.
He
,
M.
Johny
,
C. C.
Papadopoulou
,
A.
Tul-Noor
,
J.
Wiese
 et al, “
Shot-by-shot 250 kHz 3D ion and MHz photoelectron imaging using Timepix3
,”
J. Phys. B: At., Mol. Opt. Phys.
55
,
144001
(
2022
).
32.
M.
Ester
,
H.-P.
Kriegel
,
J.
Sander
,
X.
Xu
 et al, “
A density-based algorithm for discovering clusters in large spatial databases with noise
,” in
KDD
(
AAAI Press
,
1996
), Vol. 96, pp.
226
231
.
33.
D. A.
Dahl
,
J. E.
Delmore
, and
A. D.
Appelhans
, “
SIMION PC/PS2 electrostatic lens design program
,”
Rev. Sci. Instrum.
61
,
607
609
(
1990
).
34.
G. A.
Garcia
,
B. K.
Cunha de Miranda
,
M.
Tia
,
S.
Daly
, and
L.
Nahon
, “
Delicious III: A multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies
,”
Rev. Sci. Instrum.
84
,
053112
(
2013
).
You do not currently have access to this content.