Superconducting nanowire single-photon detectors are an enabling technology for modern quantum information science and are gaining attractiveness for the most demanding photon counting tasks in other fields. Embedding such detectors in photonic integrated circuits enables additional counting capabilities through nanophotonic functionalization. Here, we show how a scalable number of waveguide-integrated superconducting nanowire single-photon detectors can be interfaced with independent fiber optic channels on the same chip. Our plug-and-play detector package is hosted inside a compact and portable closed-cycle cryostat providing cryogenic signal amplification for up to 64 channels. We demonstrate state-of-the-art multi-channel photon counting performance with average system detection efficiency of (40.5 ± 9.4)% and dark count rate of (123 ± 34) Hz for 32 individually addressable detectors at minimal noise-equivalent power of (5.1 ± 1.2) · 10−18 W/Hz. Our detectors achieve timing jitter as low as 26 ps, which increases to (114 ± 17) ps for high-speed multi-channel operation using dedicated time-correlated single photon counting electronics. Our multi-channel single photon receiver offers exciting measurement capabilities for future quantum communication, remote sensing, and imaging applications.

1.
E.
Diamanti
,
H.-K.
Lo
,
B.
Qi
, and
Z.
Yuan
, “
Practical challenges in quantum key distribution
,”
npj Quantum Inf.
2
,
16025
(
2016
).
2.
S.
Slussarenko
and
G. J.
Pryde
, “
Photonic quantum information processing: A concise review
,”
Appl. Phys. Rev.
6
,
041303
(
2019
).
3.
J. L.
O’brien
,
A.
Furusawa
, and
J.
Vučković
, “
Photonic quantum technologies
,”
Nat. Photonics
3
,
687
695
(
2009
).
4.
G.
Moody
,
V. J.
Sorger
,
D. J.
Blumenthal
,
P. W.
Juodawlkis
,
W.
Loh
,
C.
Sorace-Agaskar
,
A. E.
Jones
,
K. C.
Balram
,
J. C. F.
Matthews
,
A.
Laing
,
M.
Davanco
,
L.
Chang
,
J. E.
Bowers
,
N.
Quack
,
C.
Galland
,
I.
Aharonovich
,
M. A.
Wolff
,
C.
Schuck
,
N.
Sinclair
,
M.
Lončar
,
T.
Komljenovic
,
D.
Weld
,
S.
Mookherjea
,
S.
Buckley
,
M.
Radulaski
,
S.
Reitzenstein
,
B.
Pingault
,
B.
Machielse
,
D.
Mukhopadhyay
,
A.
Akimov
,
A.
Zheltikov
,
G. S.
Agarwal
,
K.
Srinivasan
,
J.
Lu
,
H. X.
Tang
,
W.
Jiang
,
T. P.
McKenna
,
A. H.
Safavi-Naeini
,
S.
Steinhauer
,
A. W.
Elshaari
,
V.
Zwiller
,
P. S.
Davids
,
N.
Martinez
,
M.
Gehl
,
J.
Chiaverini
,
K. K.
Mehta
,
J.
Romero
,
N. B.
Lingaraju
,
A. M.
Weiner
,
D.
Peace
,
R.
Cernansky
,
M.
Lobino
,
E.
Diamanti
,
L. T.
Vidarte
, and
R. M.
Camacho
, “
2022 roadmap on integrated quantum photonics
,”
J. Phys.: Photonics
4
,
012501
(
2022
).
5.
X.
Qiang
,
X.
Zhou
,
J.
Wang
,
C. M.
Wilkes
,
T.
Loke
,
S.
O’Gara
,
L.
Kling
,
G. D.
Marshall
,
R.
Santagati
,
T. C.
Ralph
 et al., “
Large-scale silicon quantum photonics implementing arbitrary two-qubit processing
,”
Nat. Photonics
12
,
534
539
(
2018
).
6.
J. W.
Silverstone
,
J.
Wang
,
D.
Bonneau
,
P.
Sibson
,
R.
Santagati
,
C.
Erven
,
J.
O’Brien
, and
M.
Thompson
, “
Silicon quantum photonics
,” in
2016 International Conference on Optical MEMS and Nanophotonics (OMN)
(
IEEE
,
2016
), pp.
1
2
.
7.
J.
Wang
,
F.
Sciarrino
,
A.
Laing
, and
M. G.
Thompson
, “
Integrated photonic quantum technologies
,”
Nat. Photonics
14
,
273
284
(
2020
).
8.
X.
Ma
,
X.
Gou
,
C.
Schuck
,
K.
Fong
,
L.
Jiang
, and
H.
Tang
, “
On-chip interaction-free measurements via the quantum zeno effect
,”
Phys. Rev. A
90
,
042109
(
2014
).
9.
I. E.
Zadeh
,
J.
Chang
,
J. W. N.
Los
,
S.
Gyger
,
A. W.
Elshaari
,
S.
Steinhauer
,
S. N.
Dorenbos
, and
V.
Zwiller
, “
Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications
,”
Appl. Phys. Lett.
118
,
190502
(
2021
).
10.
S.
Ferrari
,
C.
Schuck
, and
W.
Pernice
, “
Waveguide-integrated superconducting nanowire single-photon detectors
,”
Nanophotonics
7
,
1725
1758
(
2018
).
11.
S.
Doerner
,
A.
Kuzmin
,
S.
Wuensch
,
I.
Charaev
,
F.
Boes
,
T.
Zwick
, and
M.
Siegel
, “
Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array
,”
Appl. Phys. Lett.
111
,
032603
(
2017
).
12.
A. K.
Sinclair
,
E.
Schroeder
,
D.
Zhu
,
M.
Colangelo
,
J.
Glasby
,
P. D.
Mauskopf
,
H.
Mani
, and
K. K.
Berggren
, “
Demonstration of microwave multiplexed readout of dc-biased superconducting nanowire detectors
,”
IEEE Trans. Appl. Supercond.
29
,
1
4
(
2019
).
13.
J. P.
Allmaras
,
E. E.
Wollman
,
A. D.
Beyer
,
R. M.
Briggs
,
B. A.
Korzh
,
B.
Bumble
, and
M. D.
Shaw
, “
Demonstration of a thermally coupled row-column SNSPD imaging array
,”
Nano Lett.
20
,
2163
(
2020
).
14.
M.
Yabuno
,
S.
Miyajima
,
S.
Miki
, and
H.
Terai
, “
Scalable implementation of a superconducting nanowire single-photon detector array with a superconducting digital signal processor
,”
Opt. Express
28
,
12047
(
2020
).
15.
S.
Miki
,
T.
Yamashita
,
Z.
Wang
, and
H.
Terai
, “
A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection
,”
Opt. Express
22
,
7811
7820
(
2014
).
16.
M. S.
Allman
,
V. B.
Verma
,
M.
Stevens
,
T.
Gerrits
,
R. D.
Horansky
,
A. E.
Lita
,
F.
Marsili
,
A.
Beyer
,
M. D.
Shaw
,
D.
Kumor
,
R.
Mirin
, and
S. W.
Nam
, “
A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout
,”
Appl. Phys. Lett.
106
,
192601
(
2015
).
17.
S.
Miyajima
,
M.
Yabuno
,
S.
Miki
,
T.
Yamashita
, and
H.
Terai
, “
High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector
,”
Opt. Express
26
,
29045
(
2018
).
18.
E. E.
Wollman
,
V. B.
Verma
,
A. E.
Lita
,
W. H.
Farr
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
, “
Kilopixel array of superconducting nanowire single-photon detectors
,”
Opt. Express
27
,
35279
35289
(
2019
).
19.
W.-J.
Zhang
,
G.-Z.
Xu
,
L.-X.
You
,
C.-J.
Zhang
,
H.
Huang
,
X.
Ou
,
X.-Q.
Sun
,
J.-M.
Xiong
,
H.
Li
,
Z.
Wang
 et al., “
Sixteen-channel fiber array-coupled superconducting single-photon detector array with average system detection efficiency over 60% at telecom wavelength
,”
Opt. Lett.
46
,
1049
1052
(
2021
).
20.
F.
Beutel
,
H.
Gehring
,
M. A.
Wolff
,
C.
Schuck
, and
W.
Pernice
, “
Detector-integrated on-chip QKD receiver for GHz Clock rates
,”
npj Quantum Inf.
7
,
40
(
2021
).
21.
S.
Gyger
,
J.
Zichi
,
L.
Schweickert
,
A. W.
Elshaari
,
S.
Steinhauer
,
S. F. C.
da Silva
,
A.
Rastelli
,
V.
Zwiller
,
K. D.
Jöns
, and
C.
Errando-Herranz
, “
Reconfigurable photonics with on-chip single-photon detectors
,”
Nat. Commun.
12
,
1408
(
2021
).
22.
R.
Marchetti
,
C.
Lacava
,
L.
Carroll
,
K.
Gradkowski
, and
P.
Minzioni
, “
Coupling strategies for silicon photonics integrated chips
,”
Photonics Res.
7
,
201
239
(
2019
).
23.
H.
Shibata
,
T.
Hiraki
,
T.
Tsuchizawa
,
K.
Yamada
,
Y.
Tokura
, and
S.
Matsuo
, “
A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a si photonics platform
,”
Supercond. Sci. Technol.
32
,
034001
(
2019
).
24.
M. A.
Wolff
,
F.
Beutel
,
J.
Schütte
,
H.
Gehring
,
M.
Häußler
,
W.
Pernice
, and
C.
Schuck
, “
Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency
,”
Appl. Phys. Lett.
118
,
154004
(
2021
).
25.
R.
Gourgues
,
I. E.
Zadeh
,
A. W.
Elshaari
,
G.
Bulgarini
,
J. W. N.
Los
,
J.
Zichi
,
D.
Dalacu
,
P. J.
Poole
,
S. N.
Dorenbos
, and
V.
Zwiller
, “
Controlled integration of selected detectors and emitters in photonic integrated circuits
,”
Opt. Express
27
,
3710
3716
(
2019
).
26.
R.
Terhaar
,
J.
Rödiger
,
M.
Häußler
,
M.
Wahl
,
H.
Gehring
,
M.
Wolff
,
F.
Beutel
,
W.
Hartmann
,
N.
Walter
,
J.
Hanke
,
P.
Hanne
,
N.
Walente
,
M.
Diedrich
,
N.
Perlot
,
M.
Tillmann
,
T.
Röhlicke
,
M.
Ahangarianabhari
,
C.
Schuck
, and
W.
Pernice
, “
Ultrafast quantum key distribution using fully parallelized quantum channels
,”
Opt. Express
(to be published); arXiv:2207.07345 (
2022
).
27.
M. A.
Wolff
,
S.
Vogel
,
L.
Splitthoff
, and
C.
Schuck
, “
Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides
,”
Sci. Rep.
10
,
17170
(
2020
).
28.
D.
Zhu
,
M.
Colangelo
,
B. A.
Korzh
,
Q.-Y.
Zhao
,
S.
Frasca
,
A. E.
Dane
,
A. E.
Velasco
,
A. D.
Beyer
,
J. P.
Allmaras
,
E.
Ramirez
 et al., “
Superconducting nanowire single-photon detector with integrated impedance-matching taper
,”
Appl. Phys. Lett.
114
,
042601
(
2019
).
29.
D. J.
Thoen
,
B. G. C.
Bos
,
E.
Haalebos
,
T.
Klapwijk
,
J.
Baselmans
, and
A.
Endo
, “
Superconducting NbTiN thin films with highly uniform properties over a 100 mm wafer
,”
IEEE Trans. Appl. Supercond.
27
,
1500505
(
2016
).
30.
See
https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules/multiharp-160
for information and technical details of the time tagger PicoQuant MultiHarp 160 used here
.
31.
T. P.
McKenna
,
R. N.
Patel
,
J. D.
Witmer
,
R.
Van Laer
,
J. A.
Valery
, and
A. H.
Safavi-Naeini
, “
Cryogenic packaging of an optomechanical crystal
,”
Opt. Express
27
,
28782
28791
(
2019
).
32.
C.
Schuck
,
W. H. P.
Pernice
,
X.
Ma
, and
H. X.
Tang
, “
Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors
,”
Appl. Phys. Lett.
102
,
191104
(
2013
).
33.
M.
Häußler
,
M. Y.
Mikhailov
,
M. A.
Wolff
, and
C.
Schuck
, “
Amorphous superconducting nanowire single-photon detectors integrated with nanophotonic waveguides
,”
APL Photonics
5
,
076106
(
2020
).
34.

In this measurement scheme two channels are involved, hence the timing jitter baseline for the 64-channel TCSPC is <105 ps FWHM.

35.
R. H.
Hadfield
, “
Single-photon detectors for optical quantum information applications
,”
Nat. Photonics
3
,
696
(
2009
).
36.
H.
Shibata
,
K.
Shimizu
,
H.
Takesue
, and
Y.
Tokura
, “
Ultimate low system dark-count rate for superconducting nanowire single-photon detector
,”
Opt. Lett.
40
,
3428
3431
(
2015
).
37.
A.
Vetter
,
S.
Ferrari
,
P.
Rath
,
R.
Alaee
,
O.
Kahl
,
V.
Kovalyuk
,
S.
Diewald
,
G. N.
Goltsman
,
A.
Korneev
,
C.
Rockstuhl
 et al., “
Cavity-enhanced and ultrafast superconducting single-photon detectors
,”
Nano Lett.
16
,
7085
7092
(
2016
).
38.
A. J.
Kerman
,
D.
Rosenberg
,
R. J.
Molnar
, and
E. A.
Dauler
, “
Readout of superconducting nanowire single-photon detectors at high count rates
,”
J. Appl. Phys.
113
,
144511
(
2013
).
39.
S.
Ferrari
,
V.
Kovalyuk
,
A.
Vetter
,
C.
Lee
,
C.
Rockstuhl
,
A.
Semenov
,
G.
Gol’tsman
, and
W.
Pernice
, “
Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate
,”
Appl. Phys. Lett.
115
,
101104
(
2019
).
40.
C.
Lv
,
W.
Zhang
,
L.
You
,
P.
Hu
,
H.
Wang
,
H.
Li
,
C.
Zhang
,
J.
Huang
,
Y.
Wang
,
X.
Yang
 et al., “
Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator
,”
AIP Adv.
8
,
105018
(
2018
).
41.
Q.
Zhao
,
T.
Jia
,
M.
Gu
,
C.
Wan
,
L.
Zhang
,
W.
Xu
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits
,”
Opt. Lett.
39
,
1869
1872
(
2014
).
42.
C. L.
Lv
,
H.
Zhou
,
H.
Li
,
L. X.
You
,
X. Y.
Liu
,
Y.
Wang
,
W. J.
Zhang
,
S. J.
Chen
,
Z.
Wang
, and
X. M.
Xie
, “
Large active area superconducting single-nanowire photon detector with a 100 μm diameter
,”
Supercond. Sci. Technol.
30
,
115018
(
2017
).
43.
C.
Cahall
,
D. J.
Gauthier
, and
J.
Kim
, “
Scalable cryogenic readout circuit for a superconducting nanowire single-photon detector system
,”
Rev. Sci. Instrum.
89
,
063117
(
2018
).
44.
J.-P.
Chen
,
C.
Zhang
,
Y.
Liu
,
C.
Jiang
,
W.
Zhang
,
X.-L.
Hu
,
J.-Y.
Guan
,
Z.-W.
Yu
,
H.
Xu
,
J.
Lin
 et al., “
Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km
,”
Phys. Rev. Lett.
124
,
070501
(
2020
).
45.
L.
You
, “
Superconducting nanowire single-photon detectors for quantum information
,”
Nanophotonics
9
,
2673
2692
(
2020
).
46.
J.
Zhu
,
Y.
Chen
,
L.
Zhang
,
X.
Jia
,
Z.
Feng
,
G.
Wu
,
X.
Yan
,
J.
Zhai
,
Y.
Wu
,
Q.
Chen
 et al., “
Demonstration of measuring sea fog with an SNSPD-based Lidar system
,”
Sci. Rep.
7
,
15113
(
2017
).
47.
Z.
Li
,
E.
Wu
,
C.
Pang
,
B.
Du
,
Y.
Tao
,
H.
Peng
,
H.
Zeng
, and
G.
Wu
, “
Multi-beam single-photon-counting three-dimensional imaging Lidar
,”
Opt. Express
25
,
10189
10195
(
2017
).
48.
A.
Gaggero
,
F.
Martini
,
F.
Mattioli
,
F.
Chiarello
,
R.
Cernansky
,
A.
Politi
, and
R.
Leoni
, “
Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires
,”
Optica
6
,
823
828
(
2019
).

Supplementary Material

You do not currently have access to this content.