Nuclear resonant vibrational spectroscopy (NRVS) is an excellent modern vibrational spectroscopy, in particular, for revealing site-specific information inside complicated molecules, such as enzymes. There are two different concepts about the energy calibration for a beamline or a monochromator (including a high resolution monochromator): the absolute energy calibration and the practical energy calibration. While the former pursues an as-fine-as-possible and as-repeatable-as-possible result, the latter includes the environment influenced variation from scan to scan, which often needs an in situ calibration measurement to track. However, an in situ measurement often shares a weak beam intensity and therefore has a noisy NRVS spectrum at the calibration sample location, not leading to a better energy calibration/correction in most cases. NRVS users for a long time have noticed that there are energy drifts in the vibrational spectra’s zero-energy positions from scan to scan (ΔEi), but their trend has not been explored and utilized in the past. In this publication, after providing a brief introduction to the critical issue(s) in practical NRVS energy calibrations, we have evaluated the trend and the mechanism for these zero-energy drifts (ΔEi) and explored their link to the energy scales (αi) from scan to scan. Via detailed analyses, we have established a new stepwise procedure for carrying out practical energy calibrations, which includes the correction for the scan-dependent energy variations using ΔEi values rather than running additional in situ calibration measurements. We also proved that one additional instrument-fixed scaling constant (α0) exists to convert such “calibrated” energy axis (E′) to the real energy axis (Ereal). The “calibrated” real energy axis (Ereal) has a preliminary error bar of ±0.1% (the 2σE divided by the vibrational energy position), which is 4–8 times better than that from the current practical energy calibration procedure.

1.
M.
Seto
 et al., “
Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation
,”
Phys. Rev. Lett.
74
,
3828
3831
(
1995
).
2.
W.
Sturhahn
 et al., “
Phonon density of states measured by inelastic nuclear resonant scattering
,”
Phys. Rev. Lett.
74
,
3832
3835
(
1995
).
3.
Y.
Yoda
 et al., “
Nuclear resonant scattering beamline at SPring-8
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
467-468
,
715
718
(
2001
).
4.
H.
Wang
 et al., “
A practical guide for nuclear resonance vibrational spectroscopy (NRVS) of biochemical samples and model compounds
,” in
Metalloproteins
, edited by
J. C.
Fontecilla-Camps
and
Y.
Nicolet
(
Humana Press
,
2014
), pp.
125
137
.
5.
Y.
Yoda
 et al., “
High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples
,”
Jpn. J. Appl. Phys.
55
,
122401
(
2016
).
6.
H.
Wang
 et al., “
Nuclear resonance vibrational spectroscopy: A modern tool to pinpoint site-specific cooperative processes
,”
Crystals
11
(
8
),
909
(
2021
).
7.
J.
Wang
,
L.
Li
, and
H.
Wang
, “
Machine learning concept in de-spiking process for nuclear resonant vibrational spectra—Automation using no external parameter
,”
Vib. Spectrosc.
119
,
103352
(
2022
).
8.
H.
Wang
,
A. P.
Salzberg
, and
B. R.
Weiner
, “
Laser ablation of aluminum at 193, 248, and 351 nm
,”
Appl. Phys. Lett.
59
(
8
),
935
937
(
1991
).
9.
M.
He
,
H.
Wang
, and
B. R.
Weiner
, “
Production and laser-induced fluorescence spectrum of aluminum sulfide
,”
Chem. Phys. Lett.
204
(
5–6
),
563
566
(
1993
).
10.
H.
Wang
,
X.
Chen
, and
B. R.
Weiner
, “
Laser photodissociation dynamics of thionyl chloride: Concerted and stepwise cleavage of S-Cl bonds
,”
J. Phys. Chem.
97
(
47
),
12260
12268
(
1993
).
11.
X.
Chen
 et al., “
Nascent sulfur monoxide (X3.SIGMA.-) vibrational distributions from the photodissociation of sulfur dioxide, sulfonyl chloride, and dimethylsulfoxide at 193 nm
,”
J. Phys. Chem.
95
(
17
),
6415
6417
(
1991
).
12.
Y.
Guo
 et al., “
Characterization of the Fe site in iron–sulfur cluster-free hydrogenase (Hmd) and a model compound via nuclear resonance vibrational spectroscopy (NRVS)
,”
Inorg. Chem.
47
(
10
),
3969
3977
(
2008
).
13.
M. C.
Smith
 et al., “
Normal-mode analysis of FeCl4 and Fe2S2Cl42− via vibrational Mössbauer, resonance Raman, and FT-IR spectroscopies
,”
Inorg. Chem.
44
(
16
),
5562
5570
(
2005
).
14.
Y.
Xiao
 et al., “
Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance Raman spectroscopy
,”
J. Am. Chem. Soc.
127
(
42
),
14596
14606
(
2005
).
15.
Y.
Xiao
 et al., “
How nitrogenase shakes—Initial information about P-cluster and FeMo-cofactor normal modes from nuclear resonance vibrational spectroscopy (NRVS)
,”
J. Am. Chem. Soc.
128
(
23
),
7608
7612
(
2006
).
16.
L. B.
Gee
 et al., “
Vibrational characterization of a diiron bridging hydride complex—A model for hydrogen catalysis
,”
Chem. Sci.
11
(
21
),
5487
5493
(
2020
).
17.
L. B.
Gee
,
H.
Wang
, and
S. P.
Cramer
, “
Chapter Fourteen—NRVS for Fe in biology: Experiment and basic interpretation
,”
Methods Enzymol.
599
,
409
425
(
2018
).
18.
Y.
Guo
 et al., “
Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals
,”
Hyperfine Interact.
222
(
S2
),
77
90
(
2012
).
19.
H.
Wang
 et al., “
A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel–iron–hydride in [NiFe] hydrogenase
,”
J. Synchrotron Radiat.
22
(
6
),
1334
1344
(
2015
).
20.
H.
Ogata
 et al., “
Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy
,”
Nat. Commun.
6
,
7890
(
2015
).
21.
S.
Kamali
 et al., “
Observation of the Fe–CN and Fe–CO vibrations in the active site of [NiFe] hydrogenase by nuclear resonance vibrational spectroscopy
,”
Angew. Chem., Int. Ed.
52
(
2
),
724
728
(
2013
).
22.
C. E.
Tinberg
 et al., “
Characterization of iron dinitrosyl species formed in the reaction of nitric oxide with a biological Rieske center
,”
J. Am. Chem. Soc.
132
(
51
),
18168
18176
(
2010
).
23.
L. H.
Do
 et al., “
Characterization of a synthetic peroxodiiron(III) protein model complex by nuclear resonance vibrational spectroscopy
,”
Chem. Commun.
47
(
39
),
10945
10947
(
2011
).
24.
R.
Gilbert-Wilson
 et al., “
Spectroscopic investigations of [FeFe] hydrogenase maturated with [57Fe2(adt)(CN)2(CO)4]2−
,”
J. Am. Chem. Soc.
137
(
28
),
8998
9005
(
2015
).
25.
V.
Pelmenschikov
 et al., “
Reaction coordinate leading to H2 production in [FeFe]-hydrogenase identified by nuclear resonance vibrational spectroscopy and density functional theory
,”
J. Am. Chem. Soc.
139
(
46
),
16894
16902
(
2017
).
26.
C. C.
Pham
 et al., “
Terminal hydride species in [FeFe]-hydrogenases are vibrationally coupled to the active site environment
,”
Angew. Chem., Int. Ed.
57
,
10605
(
2018
).
27.
V.
Pelmenschikov
 et al., “
Vibrational perturbation of the [FeFe] hydrogenase H-cluster revealed by 13C2H-ADT labeling
,”
J. Am. Chem. Soc.
143
,
8237
(
2021
).
28.
W. W.
Gu
 et al., “
Refinement of the nickel site structure in Desulfovibrio gigas hydrogenase using range-extended EXAFS spectroscopy
,”
J. Inorg. Biochem.
93
(
1–2
),
41
51
(
2003
).
29.
S.
DeBeer George
 et al., “
A quantitative description of the ground-state wave function of CuA by X-ray absorption spectroscopy: Comparison to plastocyanin and relevance to electron transfer
,”
J. Am. Chem. Soc.
123
(
24
),
5757
5767
(
2001
).
30.
B.
O’Dowd
 et al., “
Spectroscopic and computational investigations of ligand binding to IspH: Discovery of non-diphosphate inhibitors
,”
ChemBioChem
18
(
10
),
914
920
(
2017
).
31.
T.
Funk
 et al., “
X-ray magnetic circular dichroism—A high energy probe of magnetic properties
,”
Coord. Chem. Rev.
249
(
1–2
),
3
30
(
2005
).
32.
H.
Wang
 et al., “
Nickel L-edge soft X-ray spectroscopy of nickel–iron hydrogenases and model compounds—Evidence for high-spin nickel(II) in the active enzyme
,”
J. Am. Chem. Soc.
122
(
43
),
10544
10552
(
2000
).
33.
H.
Wang
 et al., “
Integrated X-ray L absorption spectra. Counting holes in Ni complexes
,”
J. Phys. Chem. B
102
(
42
),
8343
8346
(
1998
).
34.
H.
Wang
 et al., “
L-edge sum rule analysis on 3d transition metal sites: From d10 to d0 and towards application to extremely dilute metallo-enzymes
,”
Phys. Chem. Chem. Phys.
20
(
12
),
8166
8176
(
2018
).
35.
J. Y.
Zhao
and
W.
Sturhahn
, “
High-energy-resolution X-ray monochromator calibration using the detailed-balance principle
,”
J. Synchrotron Radiat.
19
,
602
608
(
2012
).
36.
H.
Wang
 et al., “
Energy calibration issues in nuclear resonant vibrational spectroscopy: Observing small spectral shifts and making fast calibrations
,”
J. Synchrotron Radiat.
20
(
5
),
683
690
(
2013
).
37.
W.
Sturhahn
, “
CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data
,”
Hyperfine Interact.
125
,
149
172
(
2000
).
38.
V. G.
Kohn
and
A. I.
Chumakov
, “
DOS: Evaluation of phonon density of states from nuclear resonant inelastic absorption
,”
Hyperfine Interact.
125
(
1–4
),
205
221
(
2000
).
39.
E. F.
Garman
and
C.
Nave
, “
Radiation damage in protein crystals examined under various conditions by different methods
,”
J. Synchrotron Radiat.
16
(
2
),
129
132
(
2009
).
40.
L.
Davis
, Accuracy vs Precision, 2020, cited 2021, available at https://www.ssusa.org/articles/2020/8/5/accuracy-vs-precision-sharpen-your-shooting-skills.
41.
Pierce and Rod, Accuracy and Precision, 2020, cited 2021, available at https://www.mathsisfun.com/accuracy-precision.html.
42.
Y.
Yoda
 et al., “
Upgrade of the nuclear resonant scattering beamline, BL09XU in SPring-8
,”
Hyperfine Interact.
206
,
83
(
2012
).
43.
M.
Yabashi
 et al., “
Design of a beamline for the SPring-8 long undulator source 1
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
467-468
,
678
(
2001
).
44.
A. Q. R.
Baron
 et al., “
An X-ray scattering beamline for studying dynamics
,”
J. Phys. Chem. Solids
61
(
3
),
461
465
(
2000
).
45.
A. Q. R.
Baron
 et al., “
Early commissioning of the SPring-8 beamline for high resolution inelastic X-ray scattering
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
467-468
,
627
630
(
2001
).
46.
T.
Hara
 et al., “
The brightest x-ray source: A very long undulator at SPring-8
,”
Rev. Sci. Instrum.
73
(
3
),
1125
1128
(
2002
).
47.
T.
Inada
 et al., “
Results of a search for paraphotons with intense X-ray beams at SPring-8
,”
Phys. Lett. B
722
(
4–5
),
301
304
(
2013
).
48.
Y.
Tanaka
 et al., “
Direct and quantitative determination of the orbital ordering in CeB6 by X-ray diffraction
,”
Europhys. Lett.
68
(
5
),
671
677
(
2004
).
49.
L.
Fengchao
and
Z.
Bin
, “
The linear coefficient of thermal expansion of silicon at room temperature
,”
Powder Diffr.
6
(
3
),
147
152
(
1991
).
50.
H.
Watanabe
,
N.
Yamada
, and
M.
Okaji
, “
Linear thermal expansion coefficient of silicon from 293 to 1000 K
,”
Int. J. Thermophys.
25
(
1
),
221
236
(
2004
).
51.
Lumen-Physics, Heat and Heat Transfer Methods,
2016
, available at https://courses.lumenlearning.com/physics/chapter/14-5-conduction/.
52.
R.
Resnick
,
D.
Halliday
, and
J.
Walker
,
Fundamentals of Physics Extended
(
Wiley
,
New York
,
2016
).
53.
W.
Sturhahn
, “
Nuclear resonant spectroscopy
,”
J. Phys.: Condens. Matter
16
(
5
),
S497
S530
(
2004
).
54.
E. E.
Alp
 et al., “
Vibrational dynamics studies by nuclear resonant inelastic X-ray scattering
,”
Hyperfine Interact.
144
(
1
),
3
20
(
2002
).
55.
C. A.
Murphy
 et al., “
Experimental constraints on the thermodynamics and sound velocities of hcp-Fe to core pressures
,”
J. Geophys. Res: Solid Earth
118
,
1999
2016
, (
2013
).
56.
F.
Wittkamp
 et al., “
Insights from 125Te and 57Fe nuclear resonance vibrational spectroscopy: A [4Fe–4Te] cluster from two points of view
,”
Chem. Sci.
10
(
32
),
7535
7541
(
2019
).
57.
M.
Seto
 et al., “
Nuclear resonant inelastic and forward scattering of synchrotron radiation by 40 K
,”
Hyperfine Interact.
141
(
1
),
99
108
(
2002
).
58.
H.
Kobayashi
 et al., “
151Eu nuclear resonant inelastic scattering of Eu4As3 around charge ordering temperature
,”
J. Phys. Soc. Jpn.
75
(
3
),
034602
(
2006
).

Supplementary Material

You do not currently have access to this content.