The assembly error of flexible joints and the change in joint stiffness during movement make the actual value of joint parameters inconsistent with the given value, which affects the joint control accuracy. In order to suppress the influence of parameters error, a parameters identification method for flexible joint combined offline identification and online compensation is proposed. First, the offline identification model of inertia, mass, and damping and the online identification model of joint stiffness are established, respectively. Then, a hybrid tracking differentiator based on an improved Sigmoid function is designed to track the differential signals of joint motion parameters, and the Lyapunov function is designed to prove its convergence. The adaptive differential evolution is used as the identification algorithm, and the improved adaptive crossover, mutation factor, and Metropolis acceptance criterion are designed to improve the convergence speed. Finally, a feedforward control structure based on identification is designed to compensate for the model deviation. Simulation and experimental results show that the improved differentiator can effectively improve the tracking speed and derivation accuracy of the signals. Compared with other algorithms, the proposed identification method has a faster convergence speed and higher identification accuracy, and feedforward compensation control can effectively correct model parameters and improve control accuracy.

1.
Y.
Song
,
S.
Wang
,
X.
Luo
, and
C.
Shi
, “
Design and optimization of a 3D printed distal flexible joint for endoscopic surgery
,”
IEEE Trans. Med. Rob. Bionics
4
(
1
),
38
49
(
2022
).
2.
S.
Jia
and
J.
Shan
, “
Finite-time trajectory tracking control of space manipulator under actuator saturation
,”
IEEE Trans. Ind. Electron.
67
(
3
),
2086
2096
(
2020
).
3.
H.
Jin
,
H.
Liu
, and
Y.
Zhang
, “
A dynamic parameter identification method for flexible joints based on adaptive control
,”
IEEE ASME Trans. Mechatron.
23
(
6
),
2896
2908
(
2018
).
4.
Y.
Han
,
J.
Wu
,
C.
Liu
, and
Z.
Xiong
, “
An iterative approach for accurate dynamic model identification of industrial robots
,”
IEEE Trans. Rob.
36
(
5
),
1577
1594
(
2020
).
5.
J.
Xiao
,
F.
Zeng
,
Q.
Zhang
, and
H.
Liu
, “
Research on the forcefree control of cooperative robots based on dynamic parameters identification
,”
Ind. Robot: Int. J. Robot. Res. Appl.
46
(
4
),
499
509
(
2019
).
6.
A.
Fagiolini
,
M.
Trumic
, and
K.
Jovanovic
, “
An input observer-based stiffness estimation approach for flexible robot joints
,”
IEEE Trans. Rob. Autom. Lett.
5
(
2
),
1843
1850
(
2020
).
7.
Z.
Wang
,
C.
Mao
,
Z.
Chen
,
Y. X.
Wang
,
J.
Zhou
, and
Z. H.
Lu
, “
A two-stage parameter identification method and compensation verification for heavy load robot
,” in
2019 4th International Conference on Control, Robotics and Cybernetics (CRC)
(
IEEE
,
2019
), pp.
38
41
.
8.
Y.
Wang
, “
Research on parameter identification and fixed-time trajectory tracking control of flexible joint robot
,” Yanshan Unibersity, Qinhuangdao,
2019
.
9.
H.
Xiao
,
B.
Guo
,
H.
Zhang
, and
C.
Li
, “
A parallel algorithm of image mean filtering based on OpenCL
,”
IEEE Access
9
,
65001
65016
(
2021
).
10.
J.
Swevers
,
C.
Ganseman
,
J.
De Schutter
, and
H.
Van Brussel
, “
Experimental robot identification using optimized periodic trajectories
,”
Mech. Syst. Signal. Process.
10
(
5
),
561
577
(
1996
).
11.
J.
Han
and
W.
Wang
, “
Non-linear tracking-differentiator
,”
J. Syst. Sci. Math. Sci.
14
(
2
),
177
183
(
1994
).
12.
X.
Wang
,
Z.
Chen
, and
Z.
Yuan
, “
Nonlinear tracking-differentiator with high speed in whole course
,”
Control Theory Appl.
20
(
6
),
875
878
(
2003
).
13.
P.
Zhao
,
M.
Yao
,
C.
Lu
, and
Y.
Hu
, “
Design of nonlinear-linear tracking differentiator with high stability and high speed
,”
45
(
8
),
43
48
(
2011
).
14.
Z.
Yang
,
J.
Ji
,
X.
Sun
,
H.
Zhu
, and
Q.
Zhao
, “
Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator
,”
IEEE Trans. Emerging Sel. Topics Power Electron.
8
(
3
),
2623
2633
(
2020
).
15.
J.
Dong
,
J.
Xu
,
Q.
Zhou
,
J.
Zhu
, and
L.
Yu
, “
Dynamic identification of industrial robot based on nonlinear friction model and LS-SOS algorithm
,”
IEEE Trans. Instrum. Meas.
70
,
1
12
(
2021
).
16.
K.
Dolinský
and
S.
Celikovsky
, “
Application of the method of maximum likelihood to identification of bipedal walking robots
,”
IEEE Trans. Control Syst. Technol.
26
(
4
),
1500
1507
(
2018
).
17.
Z.
Yu
,
L.
Xiao
,
H.
Li
,
X.
Zhu
, and
R.
Huai
, “
Model parameter identification for lithium batteries using the coevolutionary particle swarm optimization method
,”
IEEE Trans. Ind. Electron.
64
(
7
),
5690
5700
(
2017
).
18.
Y.
Jiang
,
L.
Yu
,
Y.
Chang
,
H.
Jia
, and
H.
Zhao
, “
Robot calibration based on modified differential evolution algorithm
,”
Opt. Precision Eng.
29
(
7
),
1580
1588
(
2021
).
19.
J.
Xie
,
Z.
Ma
,
K.
Dehghanpour
,
Z.
Wang
,
Y.
Wang
,
R.
Diao
, and
D.
Shi
, “
Imitation and transfer Q-learning-based parameter identification for composite load modeling
,”
IEEE Trans. Smart Grid
12
(
2
),
1674
1684
(
2021
).
20.
W.
Guo
,
Y.
Xian
,
D.
Zhang
, and
Z.
Wang
, “
Identification method of SINS error parameters utilizing artificial neural network for hypersonic vehicle
,”
IEEE Access
7
,
165820
165841
(
2019
).
21.
J.
Zhou
and
Y.
Yu
, “
Dynamic parameter identification of modular robot with flexible joints
,”
Robot
33
(
4
),
440
448
(
2011
).
22.
Y. C.
Han
,
P. H.
Zhong
,
C.
Li
,
Z. P.
Li
, and
X. H.
Li
, “
Study on BFGS-MLM algorithm in dynamics parameter identification of industrial robots
,” in
2018 Chinese Automation Congress (CAC)
(
IEEE
,
2018
), pp.
572
577
.
23.
X.
Shao
and
H.
Wang
, “
Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator
,”
J. Franklin Inst.
353
(
9
),
1957
1984
(
2016
).
24.
H.
Wu
and
Y.
Chen
, “
The application of composite differential trackers capacitive position sensors
,”
J. Chongqing Univ.
44
(
11
),
24
30
(
2021
).
25.
A.
Ghosh
,
S.
Das
,
A.
Chowdhury
, and
R.
Giri
, “
An improved differential evolution algorithm with fitness-based adaptation of the control parameters
,”
Inf. Sci.
181
(
18
),
3749
3765
(
2011
).
26.
X. H.
Wang
, “
Differentiator design and application - signal filtering and differentiation
,” Publishing House of Electronics Industry: Beijing, China,
2010
.
You do not currently have access to this content.