When aircraft are struck by lightning, the aircraft’s structural fuselage and components are stressed by electrical and thermo-mechanical constraints, which imposes a need for reliable experimental test benches to design accurate and enhanced lightning protection. In order to reproduce the in-flight conditions of an aircraft in a laboratory, the aim of this work is to design and implement launch equipment able to propel aeronautical test samples at speeds characteristic of an aircraft— from 10 m/s for ultra-light gliders to 100 m/s for airliners—before striking it with an electric arc within the laboratory dimensions of several meters. After a comparison of several propulsion techniques, the selected solution is an augmented electromagnetic railgun launcher. Since it requires the injection of a high current to be efficient and a low voltage operative point for safety considerations, specific and original electric generator and rail structures have been designed and experimentally implemented. Particular attention has been paid to the experimental problems encountered and mainly the sliding contact, since almost no literature references are available for railgun equipment at this level of performance. Then, based on different experimental implementations, a dynamic and ballistic model of the projectile has been developed to evaluate and characterize friction forces with the aim of predicting launcher performances with different inputs. This serves to control the speed of the material test sample during the lightning strike. Finally, the railgun equipment has been coupled to a lightning generator to reproduce the lightning strike of an aircraft respecting in-flight conditions.

1.
J. A.
Plumer
, in
International Conference on Lightning Protection
,
Vienna
,
2012
.
2.
A.
Larsson
,
P.
Lalande
,
A.
Bondiou-Clergerie
, and
A.
Delannoy
,
J. Phys. D: Appl. Phys.
33
,
1866
(
2000
).
3.
C.
Guerra-Garcia
,
N. C.
Nguyen
,
J.
Peraire
, and
M.
Martinez-Sanchez
,
J. Phys. D: Appl. Phys.
49
,
375204
(
2016
).
4.
F.
Tholin
,
L.
Chemartin
, and
P.
Lalande
, in
International Conference on Lightning and Static Electricity
,
Toulouse
,
2015
.
5.
K.
Koyama
,
H.
Toya
,
Y.
Wasa
, and
A.
Hasegawa
,
IEEE Trans. Magn.
29
(
1
),
843
(
1993
).
6.
A. E.
Guile
and
P. E.
Secker
,
J. Appl. Phys.
29
,
1662
1667
(
1958
).
7.
P. R.
Zeller
and
W. F.
Rieder
, in
IEEE Transactions on Components and Packaging Technologies
(
IEEE
,
2001
), Vol. 24, Issue 3.
8.
D. W.
Clifford
and
L. E.
McCrary
, “
Final report: Simulated lightning test shuttle. 03 scale model
,” Report No. MDC A3155,
1974
.
9.
L. L.
Oh
and
S. D.
Schneider
, in
International Conference on Lightning and Static Electricity
,
Abingdon
,
1975
.
10.
J. A.
Dobbing
and
A. W.
Hanson
, in
1978 International Symposium on Electromagnetic compatibility
,
Atlanta
,
1978
.
11.
R.
Vermorel
,
N.
Vandenberghe
, and
E.
Villermaux
,
Proc. R. Soc. A
463
,
641
658
(
2007
).
12.
E.
Huggins
,
Phys. Teach.
46
,
142
(
2008
).
13.
C.
Ross
,
Mechanics of Solids
(
Elsevier Science
,
1999
).
14.
D.
Keeports
,
Phys. Teach.
34
,
460
461
(
1996
).
15.
H. B.
Ahmed
,
B.
Multon
,
N.
Bernard
, and
C.
Kerzreho
, La Revue 3 E. I, Société de l’électricité, de l’électronique et des technologies de l’information et de la communication,
18
29
,
2007
.
16.
N.
Pilz
,
H.
Adirim
,
R.
Lo
, and
A.
Schildknecht
, in
Proceedings of 2nd International Conference on Green Propellant for Space Propulsion
,
Sardinia
,
2004
.
17.
D. B.
Longcope
,
Int. J. Impact Eng.
17
(
4–6
),
527
(
1995
).
18.
A.
Cassat
,
N.
Corsi
,
R.
Moser
, and
N.
Wavre
, in
4th International Symposium on Linear Drives for Industry Application, Birmingham
,
2003
.
19.
H. D.
Fair
,
IEEE Trans. Magn.
33
(
1
),
11
(
1997
).
20.
I. R.
McNab
,
IEEE Trans. Magn.
39
(
1
),
295
(
2003
).
21.
H. D.
Fair
,
IEEE Trans. Magn.
29
(
1
),
342
(
1993
).
22.
H.
Tamura
and
A. B.
Sawaoka
,
Rev. Sci. Instrum.
63
,
3102
3107
(
1992
).
23.
J. V.
Parker
,
IEEE Trans. Magn.
25
(
1
),
418
424
(
1989
).
24.
P.
Lehmann
,
H.
Peter
, and
J.
Wey
,
IEEE Trans. Magn.
37
(
1
),
435
(
2001
).
25.
S. C.
Rashleigh
and
R. A.
Marshall
,
J. Appl. Phys.
49
,
2540
2542
(
1978
);
L.
Dai
,
Q.
Zhang
,
H.
Zhong
,
F.
Lin
,
H.
Li
,
Y.
Wang
,
C.
Su
,
Q.
Huang
, and
X.
Chen
,
Rev. Sci. Instrum.
86
,
074703
(
2015
).
[PubMed]
26.
J. V.
Parker
,
J. Appl. Phys.
53
,
6710
6723
(
1982
).
27.
P.
Sharma
and
T. S.
Bhatti
,
Energy Convers. Manage.
51
(
12
),
2901
2912
(
2010
).
28.
S. O.
Starr
and
R. C.
Youngquist
,
Am. J. Phys.
81
,
38
43
(
2013
).
29.
L. J.
Giacoletto
,
Electronic Designer’s Handbook
(
McGraw-Hill Book Company
,
1977
).
30.
S.
Katsuki
,
H.
Akiyama
,
N.
Eguchi
,
T.
Sueda
,
M.
Soejima
, and
S.
Maeda
,
Rev. Sci. Instrum.
66
,
4227
4232
(
1995
).
31.
M.
Schneider
,
D.
Eckenfels
, and
F.
Hatterer
,
IEEE Trans. Magn.
39
(
1
),
76
81
(
2003
).
32.
J. P.
Barber
,
D. P.
Bauer
,
K.
Jamison
,
J. V.
Parker
,
F.
Stefani
, and
A.
Zielinski
,
IEEE Trans. Magn.
39
(
1
),
47
51
(
2003
).
33.
J. P.
Barber
and
A.
Challita
,
IEEE Trans. Magn.
29
(
1
),
733
738
(
1993
).
34.
J.
Gallant
and
P.
Lehmann
,
IEEE Trans. Magn.
41
(
1
),
188
193
(
2005
).
35.
I. R.
McNab
,
IEEE Trans. Magn.
39
(
1
),
498
500
(
2003
).
36.
M.
Schneider
,
D.
Eckenfels
, and
S.
Nezirevic
,
IEEE Trans. Magn.
39
(
1
),
183
187
(
2003
).
37.
J.
Chen
and
Q.
Lv
,
IOP Conf. Ser.: Earth Environ. Sci.
170
,
042089
(
2018
).
38.
I. L.
Singer
,
M. J.
Veracka
,
C. N.
Boyer
, and
J. M.
Neri
,
IEEE Trans. Magn.
39
(
1
),
138
143
(
2011
).
39.
C.
Zhu
and
B.
Li
,
Def. Technol.
16
(
4
),
747
752
(
2020
).
40.
P. J.
Blau
,
ASM Handbook, Friction, Lubrification and Wear Vol. 18
(
ASM International
,
1992
).
41.
R.
Holm
,
Electric Contacts: Theory and Application
(
Springer Verlag GmbH
,
1967
).
42.
M.
Braunovic
,
N. K.
Myshkin
, and
V. V.
Konchits
,
Electrical Contacts: Fundamentals, Applications and Technology
(
CRC Press
,
2017
).
43.
T.
Siaenen
,
M. G.
Schneider
, and
M. J.
Löffler
,
IEEE Trans. Plasma Sci.
39
(
1
),
133
137
(
2011
).
44.
SAE ARP5412B and Eurocae ED-105A, Aircraft Lightning Environment and Related Test Waveforms, AE-2 Lightning Committee,
SAE International
,
London
2013
.
45.
V.
Andraud
,
R.
Sousa Martins
,
C.
Zaepffel
,
R.
Landfried
, and
P.
Testé
,
Rev. Sci. Instrum.
92
,
104709
(
2021
).
46.
A.
Kadivar
,
K.
Niayesh
,
N.
Støa-Aanensen
, and
F.
Abid
,
J. Phys. D: Appl. Phys.
54
,
055203
(
2020
).
You do not currently have access to this content.