The RMF (Rotating Magnetic Field) code is designed to calculate the motion of a charged particle in a given electromagnetic field. It integrates Hamilton’s equations in cylindrical coordinates using an adaptive predictor-corrector double-precision variable-coefficient ordinary differential equation solver for speed and accuracy. RMF has multiple capabilities for the field. Particle motion is initialized by specifying the position and velocity vectors. The six-dimensional state vector and derived quantities are saved as functions of time. A post-processing graphics code, XDRAW, is used on the stored output to plot up to 12 windows of any two quantities using different colors to denote successive time intervals. Multiple cases of RMF may be run in parallel and perform data mining on the results. Recent features are a synthetic diagnostic for simulating the observations of charge-exchange-neutral energy distributions and RF grids to explore a Fermi acceleration parallel to static magnetic fields.

1.
DVODE: ODE solver – Legacy Fortran77 code, available from Netlib.
2.
M. J.
Hill
, “On a spherical vortex,”
Philos. Trans. R. Soc., A
185
,
213
(
1894
).
3.
R. L.
Spencer
and
D. W.
Hewett
, “Free boundary field-reversed configuration (FRC) equilibria in a conducting cylinder,”
Phys. Fluids
25
,
1365
(
1982
).
4.
C. P. S.
Swanson
and
S. A.
Cohen
, “The effect of rigid electron rotation on the Grad–Shafranov equilibria of a class of FRC devices,”
Nucl. Fusion
61
,
086023
(
2021
).
5.
H. A.
Blevin
and
P. C.
Thonemann
, “Plasma confinement using an alternating magnetic field,”
Nucl. Fusion Suppl. Pt. I
55
(
1962
).
6.
K.
Ramasubramanian
and
M. S.
Sriram
, “Lyapunov spectra of Hamiltonian systems using reduced tangent dynamics,”
Phys. Rev. E
62
,
4850
(
2000
).
7.
A. H.
Glasser
and
S. A.
Cohen
, “Interpreting ion-energy distributions using charge exchange emitted from deeply kinetic field-reversed-configuration plasmas,”
Phys. Plasmas
29
(
5
),
052508
(
2022
).
8.
C. P. S.
Swanson
,
C. A.
Galea
, and
S. A.
Cohen
, “Electron heating in 2-D: Combining Fermi–Ulam acceleration and magnetic-moment non-adiabaticity in a mirror-configuration plasma,”
Phys. Plasmas
29
(
to be published
).
9.
L.
Zakharov
and
V.
Shafranov
, “Equilibrium of current-carrying plasmas in toroidal configurations,”
Rev. Plasma Phys.
11
,
206
(
1986
).
10.
A. S.
Landsman
,
S. A.
Cohen
, and
A. H.
Glasser
, “Regular and stochastic orbits of ions in a highly prolate field-reversed configuration,”
Phys. Plasmas
11
(
3
),
947
(
2004
).
11.
M. Y.
Wang
and
G. H.
Miley
, “Particle orbits in field-reversed mirrors,”
Nucl. Fusion
19
,
39
(
1979
).
12.
B. V.
Chirikov
, “Stability of the motion of a charged particle in a magnetic confinement system,”
Sov. J. Plasma Phys.
4
,
3
(
1978
).
13.
A. H.
Glasser
and
S. A.
Cohen
, “Ion and electron acceleration in the field-reversed configuration with an odd-parity rotating magnetic field,”
Phys. Plasmas
9
,
2093
(
2002
).
14.
L. R.
Henrich
. “Departure of particle orbits from the adiabatic approximation.” in
Proc. Conf. on Thermonuclear Reactions
(
United States Atomic Energy Comission
,
Gatlinburg, TN
,
1956)
.
15.
R. H.
Cohen
,
G.
Rowlands
, and
J. H.
Foote
, “Nonadiabaticity in mirror machines,”
Phys. Fluids
21
,
627
(
1978
).
16.
T. W.
Speiser
, “Particle trajectories in a model current sheet, based on the open model of the magnetosphere, with applications to auroral particles,”
J. Geophys. Res.
70
,
1717
, (
1965
).
17.
J.
Chen
, “Nonlinear dynamics of charged particles in the magnetotail,”
J. Geophys. Res.: Space Phys.
97
,
15011
, (
1992
).
18.
S. A.
Cohen
and
R. D.
Milroy
, “Maintaining the closed magnetic-field-line topology of a field-reversed configuration with the addition of static transverse magnetic fields,”
Phys. Plasmas
7
(
6
),
2539
2545
(
2000
).
19.
S. A.
Cohen
and
A. H.
Glasser
, “Ion heating in the field-reversed configuration by rotating magnetic fields near the ion-cyclotron resonance,”
Phys. Rev. Lett.
85
,
5114
(
2000
).
20.
A. S.
Landsman
,
S. A.
Cohen
, and
A. H.
Glasser
, “Onset and saturation of ion heating by odd-parity rotating magnetic fields in a field-reversed configuration,”
Phys. Rev. Lett.
96
,
015002
(
2006
).
21.
R. J.
Hastie
,
G. D.
Hobbs
, and
J. B.
Taylor
“Non-adiabatic behaviour of particles in inhomogeneous magnetic fields,” in
Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the Third International Conference on Plasma Physics and Controlled Nuclear Fusion Research
(IAEA,
Vienna
,
1969
), Vol. I.
22.
D. C.
Delcourt
,
R. F.
Martin
, Jr.
, and
F.
Alem
, “A simple model of magnetic moment scattering in a field reversal,”
Geophys. Res. Lett.
21
,
1543
, (
1994
).
23.
See
http://arks.princeton.edu/ark:/88435/dsp01x920g025r
for the graphs presented herein
.
You do not currently have access to this content.