Imaging-based detection of the motion of levitated nanoparticles complements a widely used interferometric detection method, providing a precise and robust way to estimate the position of the particle. Here, we demonstrate a camera-based feedback cooling scheme for a charged nanoparticle levitated in a linear Paul trap. The nanoparticle levitated in vacuum was imaged using a complementary metal-oxide semiconductor (CMOS) camera system. The images were processed in real-time with a microcontroller integrated with a CMOS image sensor. The phase-delayed position signal was fed back to one of the trap electrodes, resulting in cooling by velocity damping. Our study provides a simple and versatile approach applicable for the control of low-frequency mechanical oscillators.

1.
A.
Pontin
,
N. P.
Bullier
,
M.
Toroš
, and
P. F.
Barker
,
Phys. Rev. Res.
2
,
023349
(
2020
).
2.
S. B.
Cataño-Lopez
,
J. G.
Santiago-Condori
,
K.
Edamatsu
, and
N.
Matsumoto
,
Phys. Rev. Lett.
124
,
221102
(
2020
).
3.
O. D.
Aguiar
,
Res. Astron. Astrophys.
11
,
1
(
2010
).
4.
G. P.
Conangla
,
A. W.
Schell
,
R. A.
Rica
, and
R.
Quidant
,
Nano Lett.
18
,
3956
(
2018
).
5.
L.
Dania
,
D. S.
Bykov
,
M.
Knoll
,
P.
Mestres
, and
T. E.
Northup
,
Phys. Rev. Res.
3
,
013018
(
2021
).
6.
T. W.
Penny
,
A.
Pontin
, and
P. F.
Barker
,
Phys. Rev. A
104
,
023502
(
2021
).
7.
B. R.
Slezak
,
C. W.
Lewandowski
,
J.-F.
Hsu
, and
B.
D’Urso
,
New J. Phys.
20
,
063028
(
2018
).
8.
J.
Gieseler
,
A.
Kabcenell
,
E.
Rosenfeld
,
J. D.
Schaefer
,
A.
Safira
,
M. J. A.
Schuetz
,
C.
Gonzalez-Ballestero
,
C. C.
Rusconi
,
O.
Romero-Isart
, and
M. D.
Lukin
,
Phys. Rev. Lett.
124
,
163604
(
2020
).
9.
J.
Millen
,
T.
Deesuwan
,
P.
Barker
, and
J.
Anders
,
Nat. Nanotechnol.
9
,
425
(
2014
).
10.
J.
Millen
,
T. S.
Monteiro
,
R.
Pettit
, and
A. N.
Vamivakas
,
Rep. Prog. Phys.
83
,
026401
(
2020
).
11.
K.
Visscher
,
S. P.
Gross
, and
S. M.
Block
,
IEEE J. Sel. Top. Quantum Electron.
2
,
1066
(
1996
).
12.
F.
Gittes
and
C. F.
Schmidt
,
Opt. Lett.
23
,
7
(
1998
).
13.
J.
Gieseler
,
B.
Deutsch
,
R.
Quidant
, and
L.
Novotny
,
Phys. Rev. Lett.
109
,
103603
(
2012
).
14.
A. T. M. A.
Rahman
,
A. C.
Frangeskou
,
P. F.
Barker
, and
G. W.
Morley
,
Rev. Sci. Instrum.
89
,
023109
(
2018
).
15.
N. P.
Bullier
,
A.
Pontin
, and
P. F.
Barker
,
Rev. Sci. Instrum.
90
,
093201
(
2019
).
16.
N. P.
Bullier
,
A.
Pontin
, and
P. F.
Barker
,
J. Phys. D: Appl. Phys.
53
,
175302
(
2020
).
17.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
,
Science
313
,
1642
(
2006
).
19.
C.
Gonzalez-Ballestero
,
M.
Aspelmeyer
,
L.
Novotny
,
R.
Quidant
, and
O.
Romero-Isart
,
Science
374
,
eabg3027
(
2021
).
20.
A.
Kuhlicke
,
A. W.
Schell
,
J.
Zoll
, and
O.
Benson
,
Appl. Phys. Lett.
105
,
073101
(
2014
).
21.
H.
Jia
,
J.
Yang
, and
X.
Li
,
J. Opt. Soc. Am. A
27
,
2038
(
2010
).
22.
M. K.
Cheezum
,
W. F.
Walker
, and
W. H.
Guilford
,
Biophys. J.
81
,
2378
(
2001
).
23.
A. C.
Frangeskou
,
A. T. M. A.
Rahman
,
L.
Gines
,
S.
Mandal
,
O. A.
Williams
,
P. F.
Barker
, and
G. W.
Morley
,
New J. Phys.
20
,
043016
(
2018
).
24.
G.
Ranjit
,
D. P.
Atherton
,
J. H.
Stutz
,
M.
Cunningham
, and
A. A.
Geraci
,
Phys. Rev. A
91
,
051805
(
2015
).
25.
A.
Setter
,
M.
Toroš
,
J. F.
Ralph
, and
H.
Ulbricht
,
Phys. Rev. A
97
,
033822
(
2018
).
26.
G. P.
Conangla
,
F.
Ricci
,
M. T.
Cuairan
,
A. W.
Schell
,
N.
Meyer
, and
R.
Quidant
,
Phys. Rev. Lett.
122
,
223602
(
2019
).
27.
C.
Liu
and
T.
Szirányi
,
Sensors
21
,
2180
(
2021
).
28.
C. S.
Smith
,
N.
Joseph
,
B.
Rieger
, and
K. A.
Lidke
,
Nat. Methods
7
,
373
(
2010
).
29.
T.
Weiss
,
M.
Roda-Llordes
,
E.
Torrontegui
,
M.
Aspelmeyer
, and
O.
Romero-Isart
,
Phys. Rev. Lett.
127
,
023601
(
2021
).
You do not currently have access to this content.