The adoption of metal additive manufacturing (AM) has tremendously increased over the years; however, it is still challenging to explain the fundamental physical phenomena occurring during these stochastic processes. To tackle this problem, we have constructed a custom metal AM system to simulate powder fed directed energy deposition. This instrument is integrated at the Cornell High Energy Synchrotron Source to conduct operando studies of the metal AM process. These operando experiments provide valuable data that can be used for various applications, such as (a) to study the response of the material to non-equilibrium solidification and intrinsic heat treatment and (b) to characterize changes in lattice plane spacing, which helps us calculate the thermo-mechanical history and resulting microstructural features. Such high-fidelity data are made possible by state-of-the-art direct-detection x-ray area detectors, which aid in the observation of solidification pathways of different metallic alloys. Furthermore, we discuss the various possibilities of analyzing the synchrotron dataset with examples across different measurement modes.

1.
J.
Mazumder
, “
Design for metallic additive manufacturing machine with capability for “certify as you build
,”
Procedia CIRP
36
,
187
192
(
2015
).
2.
L.
Cao
,
S.
Chen
,
M.
Wei
,
Q.
Guo
,
J.
Liang
,
C.
Liu
, and
M.
Wang
, “
Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel
,”
Opt. Laser Technol.
111
,
541
553
(
2019
).
3.
A.
Saboori
,
D.
Gallo
,
S.
Biamino
,
P.
Fino
, and
M.
Lombardi
, “
An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties
,”
Appl. Sci.
7
,
883
(
2017
).
4.
S. A.
Khairallah
,
A. T.
Anderson
,
A.
Rubenchik
, and
W. E.
King
, “
Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
,”
Acta Mater.
108
,
36
45
(
2016
).
5.
F.
Caiazzo
, “
Additive manufacturing by means of laser-aided directed metal deposition of titanium wire
,”
Int. J. Adv. Manuf. Technol.
96
,
2699
2707
(
2018
).
6.
S.
Gorsse
,
C.
Hutchinson
,
M.
Gouné
, and
R.
Banerjee
, “
Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys
,”
Sci. Technol. Adv. Mater.
18
,
584
610
(
2017
).
7.
A.
Moridi
,
A. G.
Demir
,
L.
Caprio
,
A. J.
Hart
,
B.
Previtali
, and
B. M.
Colosimo
, “
Deformation and failure mechanisms of Ti–6Al–4V as built by selective laser melting
,”
Mater. Sci. Eng. A
768
,
138456
(
2019
).
8.
J.
Kim
,
A.
Wakai
, and
A.
Moridi
, “
Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys
,”
J. Mater. Res.
35
,
1963
1983
(
2020
).
9.
A.
Moridi
,
S. M.
Hassani-Gangaraj
,
M.
Guagliano
, and
M.
Dao
, “
Cold spray coating: Review of material systems and future perspectives
,”
Surf. Eng.
30
,
369
395
(
2014
).
10.
S. M.
Thompson
,
L.
Bian
,
N.
Shamsaei
, and
A.
Yadollahi
, “
An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics
,”
Addit. Manuf.
8
,
36
62
(
2015
).
11.
A.
Heralić
,
A.-K.
Christiansson
, and
B.
Lennartson
, “
Height control of laser metal-wire deposition based on iterative learning control and 3D scanning
,”
Opt. Lasers Eng.
50
,
1230
1241
(
2012
).
12.
I.
Gibson
,
D.
Rosen
, and
B.
Stucker
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed. (
Springer
,
2015
), ISBN: 9781493921126.
13.
A.
Dass
and
A.
Moridi
, “
State of the art in directed energy deposition: From additive manufacturing to materials design
,”
Coatings
9
,
418
(
2019
).
14.
T.
DebRoy
,
H. L.
Wei
,
J. S.
Zuback
,
T.
Mukherjee
,
J. W.
Elmer
,
J. O.
Milewski
,
A. M.
Beese
,
A.
Wilson-Heid
,
A.
De
, and
W.
Zhang
, “
Additive manufacturing of metallic components—Process, structure and properties
,”
Prog. Mater. Sci.
92
,
112
224
(
2018
).
15.
C.
Li
,
Z. Y.
Liu
,
X. Y.
Fang
, and
Y. B.
Guo
, “
Residual stress in metal additive manufacturing
,”
Procedia CIRP
71
,
348
353
(
2018
).
16.
P.
Promoppatum
,
S.-C.
Yao
,
P. C.
Pistorius
, and
A. D.
Rollett
, “
A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion
,”
Engineering
3
,
685
694
(
2017
).
17.
C.
Kenel
,
D.
Grolimund
,
X.
Li
,
E.
Panepucci
,
V. A.
Samson
,
D. F.
Sanchez
,
F.
Marone
, and
C.
Leinenbach
, “
In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction
,”
Sci. Rep.
7
,
16358
(
2017
).
18.
C.
Zhao
,
K.
Fezzaa
,
R. W.
Cunningham
,
H.
Wen
,
F.
De Carlo
,
L.
Chen
,
A. D.
Rollett
, and
T.
Sun
, “
Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
,”
Sci. Rep.
7
,
3602
(
2017
).
19.
H.
Wang
,
Y.
Kawahito
,
Y.
Nakashima
, and
K.
Shiokawa
, “
Coupled effects of heating method and rate on the measured nonisothermal austenization temperature of steel SUS420J1 in heat treatment
,”
J. Manuf. Sci. Eng. Trans. ASME
140
,
061014
(
2018
).
20.
C.
Zhao
,
Q.
Guo
,
X.
Li
,
N.
Parab
,
K.
Fezzaa
,
W.
Tan
,
L.
Chen
, and
T.
Sun
, “
Bulk-explosion-induced metal spattering during laser processing
,”
Phys. Rev. X
9
,
021052
(
2019
).
21.
N. D.
Parab
,
C.
Zhao
,
R.
Cunningham
,
L. I.
Escano
,
B.
Gould
,
S.
Wolff
,
Q.
Guo
,
L.
Xiong
,
C.
Kantzos
,
J.
Pauza
 et al., “
High-speed synchrotron X-ray imaging of laser powder bed fusion process
,”
Synchrotron Radiat. News
32
,
4
8
(
2019
).
22.
S. J.
Wolff
,
H.
Wu
,
N.
Parab
,
C.
Zhao
,
K. F.
Ehmann
,
T.
Sun
, and
J.
Cao
, “
In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing
,”
Sci. Rep.
9
,
962
(
2019
).
23.
Q.
Guo
,
C.
Zhao
,
M.
Qu
,
L.
Xiong
,
S. M. H.
Hojjatzadeh
,
L. I.
Escano
,
N. D.
Parab
,
K.
Fezzaa
,
T.
Sun
, and
L.
Chen
, “
In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing
,”
Addit. Manuf.
31
,
100939
(
2020
).
24.
S.
Hocine
,
H.
Van Swygenhoven
,
S.
Van Petegem
,
C. S. T.
Chang
,
T.
Maimaitiyili
,
G.
Tinti
,
D.
Ferreira Sanchez
,
D.
Grolimund
, and
N.
Casati
, “
Operando X-ray diffraction during laser 3D printing
,”
Mater. Today
34
,
30
40
(
2020
).
25.
F.
Schmeiser
,
E.
Krohmer
,
N.
Schell
,
E.
Uhlmann
, and
W.
Reimers
, “
Experimental observation of stress formation during selective laser melting using in situ X-ray diffraction
,”
Addit. Manuf.
32
,
101028
(
2020
).
26.
V.
Thampy
,
A. Y.
Fong
,
N. P.
Calta
,
J.
Wang
,
A. A.
Martin
,
P. J.
Depond
,
A. M.
Kiss
,
G.
Guss
,
Q.
Xing
,
R.T.
Ott
 et al., “
Subsurface cooling rates and microstructural response during laser based metal additive manufacturing
,”
Sci. Rep.
10
,
1981
(
2020
).
27.
S. A.
Oh
,
R. E.
Lim
,
J. W.
Aroh
,
A. C.
Chuang
,
B. J.
Gould
,
B.
Amin-Ahmadi
,
J. V.
Bernier
,
T.
Sun
,
P. C.
Pistorius
,
R. M.
Suter
, and
A. D.
Rollett
, “
High speed synchrotron X-ray diffraction experiments resolve microstructure and phase transformation in laser processed Ti-6Al-4V
,”
Mater. Res. Lett.
9
,
429
436
(
2021
).
28.
Y.
Chen
,
S. J.
Clark
,
L.
Sinclair
,
C. L. A.
Leung
,
S.
Marussi
,
T.
Connolley
,
R. C.
Atwood
,
G. J.
Baxter
,
M. A.
Jones
,
I.
Todd
, and
P. D.
Lee
, “
Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242
,”
Addit. Manuf.
41
,
101969
(
2021
).
30.
B.
Schneiderman
,
A. C.
Chuang
,
P.
Kenesei
, and
Z.
Yu
, “
In situ synchrotron diffraction and modeling of non-equilibrium solidification of a MnFeCoNiCu alloy
,”
Sci. Rep.
11
,
5921
(
2021
).
31.
L. J.
Koerner
,
R. E.
Gillilan
,
K. S.
Green
,
S.
Wang
, and
S. M.
Gruner
, “
Small-angle solution scattering using the mixed-mode pixel array detector
,”
J. Synchrotron Radiat.
18
,
148
156
(
2011
).
32.
H. T.
Philipp
,
M. W.
Tate
,
K. S.
Shanks
,
P.
Purohit
, and
S. M.
Gruner
, “
High dynamic range CdTe mixed-mode pixel array detector (MM-PAD) for kilohertz imaging of hard x-rays
,”
J. Instrum.
15
,
P06025
(
2020
).
33.
M.
Ghayoor
,
K.
Lee
,
Y.
He
,
C.-h.
Chang
,
B. K.
Paul
, and
S.
Pasebani
, “
Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties
,”
Addit. Manuf.
32
,
101011
(
2020
).
34.
Z.
Wang
,
E.
Denlinger
,
P.
Michaleris
,
A. D.
Stoica
,
D.
Ma
, and
A. M.
Beese
, “
Residual stress mapping in Inconel 625 fabricated through additive manufacturing: Method for neutron diffraction measurements to validate thermomechanical model predictions
,”
Mater. Des.
113
,
169
177
(
2017
).
35.
E.
Uhlmann
,
E.
Krohmer
,
F.
Schmeiser
,
N.
Schell
, and
W.
Reimers
, “
A laser powder bed fusion system for in situ x-ray diffraction with high-energy synchrotron radiation
,”
Rev. Sci. Instrum.
91
,
075104
(
2020
).
You do not currently have access to this content.