Spin polarized scanning tunneling microscopy (SP-STM) and magnetic exchange force microscopy (MExFM) are powerful tools to characterize spin structure at the atomic scale. For low temperature measurements, liquid helium cooling is commonly used, which has the advantage of generating low noise but has the disadvantage of having difficulties in carrying out measurements with long durations at low temperatures and measurements with a wide temperature range. The situation is just reversed for cryogen-free STM, where the mechanical vibration of the refrigerator becomes a major challenge. In this work, we have successfully built a cryogen-free system with both SP-STM and MExFM capabilities, which can be operated under a 9 T magnetic field provided by a cryogen-free superconducting magnet and in a wide temperature range between 1.4 and 300 K. With the help of our specially designed vibration isolation system, the noise is reduced to an extremely low level of 0.7 pm. The Fe/Ir(111) magnetic skyrmion lattice is used to demonstrate the technical novelties of our cryogen-free system.

1.
U.
Kaiser
,
A.
Schwarz
, and
R.
Wiesendanger
,
Nature
446
(
7135
),
522
525
(
2007
).
2.
A.
Bettac
,
J.
Koeble
,
K.
Winkler
 et al.,
Nanotechnology
20
(
26
),
264009
(
2009
).
3.
N.
Hauptmann
,
J. W.
Gerritsen
,
D.
Wegner
, and
A. A.
Khajetoorians
,
Nano Lett.
17
(
9
),
5660
5665
(
2017
).
4.
M.-X.
Liu
,
S.-C.
Li
,
Z.-Q.
Zha
, and
X.-H.
Qiu
,
Acta Phys.-Chim. Sin.
33
(
1
),
183
197
(
2017
).
5.
S.
Chaudhary
,
J. J.
Panda
,
S.
Mundlia
 et al.,
Rev. Sci. Instrum.
92
(
2
),
023906
(
2021
).
6.
J.
Wang
,
T.
Geng
,
W.
Meng
 et al.,
Rev. Sci. Instrum.
91
(
5
),
053702
(
2020
).
7.
S.
Zhang
,
D.
Huang
, and
S.
Wu
,
Rev. Sci. Instrum.
87
(
6
),
063701
(
2016
).
8.
W.
Meng
,
J.
Wang
,
Y.
Hou
 et al.,
Ultramicroscopy
205
,
20
26
(
2019
).
9.
H.
von Allwörden
,
A.
Eich
,
E. J.
Knol
 et al.,
Rev. Sci. Instrum.
89
(
3
),
033902
(
2018
).
10.
A.
Gemma
,
A.
Zulji
,
F.
Hurtak
 et al.,
Rev. Sci. Instrum.
92
(
12
),
123704
(
2021
).
11.
F. J.
Giessibl
,
Science
267
(
5194
),
68
71
(
1995
).
12.
L.
Gross
,
F.
Mohn
,
N.
Moll
 et al.,
Science
325
(
5944
),
1110
1114
(
2009
).
13.
Y.
Sugimoto
,
P.
Pou
,
M.
Abe
 et al.,
Nature
446
(
7131
),
64
67
(
2007
).
14.
F. J.
Giessibl
,
S.
Hembacher
,
M.
Herz
 et al.,
Nanotechnology
15
(
2
),
S79
S86
(
2004
).
15.
F. J.
Giessibl
,
Rev. Sci. Instrum.
90
(
1
),
011101
(
2019
).
16.
Y.
Xing
,
J.
Shen
,
H.
Chen
 et al.,
Nat. Commun.
11
(
1
),
5613
(
2020
).
17.
S. H.
Kim
and
A.
de Lozanne
,
Rev. Sci. Instrum.
83
(
10
),
103701
(
2012
).
18.
K.
von Bergmann
,
S.
Heinze
,
M.
Bode
 et al.,
New J. Phys.
9
(
10
),
396
(
2007
).
19.
J.-O.
Jung
,
S.
Choi
,
Y.
Lee
 et al.,
Rev. Sci. Instrum.
88
(
10
),
103702
(
2017
).
20.
Y.
Han
and
A.
Zhang
,
Sci. Rep.
12
(
1
),
2349
(
2022
).
21.
K.
Bian
,
C.
Gerber
,
A. J.
Heinrich
 et al.,
Nat. Rev. Methods Primers
1
(
1
),
36
(
2021
).
22.
B.
Schrunk
,
L.
Huang
,
Y.
Wu
 et al.,
Rev. Sci. Instrum.
90
(
9
),
093105
(
2019
).
23.
M. Q.
Gong
,
E. C.
Luo
, and
Y.
Zhou
,
Paper Presented at the ICCR 98 Meeting
(
Zhejiang University
,
Hangzhou
,
1998
).
24.
O.
Ochs
,
W. M.
Heckl
, and
M.
Lackinger
,
Rev. Sci. Instrum.
89
(
5
),
053707
(
2018
).
25.
B. J.
Albers
,
M.
Liebmann
,
T. C.
Schwendemann
 et al.,
Rev. Sci. Instrum.
79
(
3
),
033704
(
2008
).
26.
P.-J.
Hsu
,
L.
Rózsa
,
A.
Finco
 et al.,
Nat. Commun.
9
(
1
),
1571
(
2018
).
27.
K.
von Bergmann
,
M.
Menzel
,
A.
Kubetzka
, and
R.
Wiesendanger
,
Nano Lett.
15
(
5
),
3280
3285
(
2015
).
28.
J.
Grenz
,
A.
Köhler
,
A.
Schwarz
 et al.,
Phys. Rev. Lett.
119
(
4
),
047205
(
2017
).
29.
B. J.
Bohn
,
M.
Schnell
,
M. A.
Kats
 et al.,
Nano Lett.
15
(
6
),
3851
3858
(
2015
).
You do not currently have access to this content.