In order to explore the applicability of superconducting magnets in a magnetic field range of 3 T or less, where superconducting magnets have not been much used so far, a prototype magnet development project has been launched in collaboration with Hanmi Techwin Corporation and Seoul National University. As a result of the project, here we report the design, construction, and operation results of a 2 T 240 mm defect-irrelevant winding (DIW) (RE) Ba2Cu3O7−x (REBCO) magnet. First, design goals were set considering its potential usage in industrial fields, and a 2 T 240 mm-bore multi-width no-insulation high-temperature superconductor magnet was designed accordingly. Based on the design, a total of 15 double pancake (DP) coils were wound, regardless of defects in REBCO tapes, and assembled together. After being installed in a conduction cooling system, the magnet was tested at a temperature of <20 K, and a magnetic field of 2 T at the magnet center was successfully generated with a total of four DP coils containing multiple defects. Based on the experimental results, the additional considerations required for the DIW approach at the magnet level are discussed.

1.
T.
Oka
,
Y.
Takayanagi
,
S.
Machida
,
K.
Ichiju
,
S.
Fukui
,
J.
Ogawa
,
T.
Sato
,
M.
Ooizumi
,
M.
Tsujimura
, and
K.
Yokoyama
, “Magnetic separation for recovering Ni compounds from plating waste with use of HTS bulk magnets,”
IEEE Trans. Appl. Supercond.
26
,
3700204
(
2016
).
2.
P.
Yang
,
Y.
Wang
,
D.
Qiu
,
T.
Chang
,
H.
Ma
,
J.
Zhu
,
Z.
Jin
, and
Z.
Hong
, “Design and fabrication of a 1-MW high-temperature superconductor DC induction heater,”
IEEE Trans. Appl. Supercond.
28
,
3700305
(
2018
).
3.
J.-G.
Kim
,
S.
Hahn
,
J.
Choi
,
Y. K.
Semertzidis
,
S.
An
, and
A.
Kim
, “A design study on a multibillet HTS induction heater with REBCO racetrack coils,”
IEEE Trans. Appl. Supercond.
29
,
4603205
(
2019
).
4.
D.
Uglietti
, “A review of commercial high temperature superconducting materials for large magnets: From wires and tapes to cables and conductors,”
Supercond. Sci. Technol.
32
,
053001
(
2019
).
5.
S.
Hahn
,
K.
Radcliff
,
K.
Kim
,
S.
Kim
,
X.
Hu
,
K.
Kim
,
D. V.
Abraimov
, and
J.
Jaroszynski
, “‘Defect-irrelevant’ behavior of a no-insulation pancake coil wound with REBCO tapes containing multiple defects,”
Supercond. Sci. Technol.
29
,
105017
(
2016
).
6.
S.
Hahn
,
K.
Kim
,
K.
Kim
,
X.
Hu
,
T.
Painter
,
I.
Dixon
,
S.
Kim
,
K. R.
Bhattarai
,
S.
Noguchi
,
J.
Jaroszynski
, and
D. C.
Larbalestier
, “45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet,”
Nature
570
,
496
499
(
2019
).
7.
J.
Kim
,
Y.
Kim
,
S.
Yoon
,
K.
Shin
,
J.
Lee
,
J. S.
Jung
,
J. T.
Lee
,
J.-G.
Kim
,
D.
Kim
,
J.
Yoo
,
H.
Lee
,
S.-H.
Moon
, and
S.
Hahn
, “Design, construction, and operation of an 18 T 70 mm no-insulation (RE) Ba2Cu3O7−x magnet for an axion haloscope experiment,”
Rev. Sci. Instrum.
91
,
023314
(
2020
).
8.
P.
Fazilleau
,
X.
Chaud
,
F.
Debray
,
T.
Lécrevisse
, and
J.-B.
Song
, “38 mm diameter cold bore metal-as-insulation HTS insert reached 32.5 T in a background magnetic field generated by resistive magnet,”
Cryogenics
106
,
103053
(
2020
).
9.
J.
Liu
,
Q.
Wang
,
L.
Qin
,
B.
Zhou
,
K.
Wang
,
Y.
Wang
,
L.
Wang
,
Z.
Zhang
,
Y.
Dai
,
H.
Liu
,
X.
Hu
,
H.
Wang
,
C.
Cui
,
D.
Wang
,
H.
Wang
,
J.
Sun
,
W.
Sun
, and
L.
Xiong
, “World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet,”
Supercond. Sci. Technol.
33
,
03LT01
(
2020
).
10.
S.
Yoon
,
J.
Kim
,
K.
Cheon
,
H.
Lee
,
S.
Hahn
, and
S.-H.
Moon
, “26 T 35 mm all-GdBa2Cu3O7–x multi-width no-insulation superconducting magnet,”
Supercond. Sci. Technol.
29
,
04LT04
(
2016
).
11.
P. C.
Michael
,
D.
Park
,
Y. H.
Choi
,
J.
Lee
,
Y.
Li
,
J.
Bascuñán
,
S.
Noguchi
,
S.
Hahn
, and
Y.
Iwasa
, “Assembly and test of a 3-nested-coil 800-MHz REBCO insert (H800) for the MIT 1.3 GHz LTS/HTS NMR magnet,”
IEEE Trans. Appl. Supercond.
29
,
4300706
(
2019
).
12.
J.-B.
Song
,
S.
Hahn
,
T.
Lécrevisse
,
J.
Voccio
,
J.
Bascuñán
, and
Y.
Iwasa
, “Over-current quench test and self-protecting behavior of a 7 T/78 mm multi-width no-insulation REBCO magnet at 4.2 K,”
Supercond. Sci. Technol.
28
,
114001
(
2015
).
13.
K.
Kim
,
K.
Kim
,
K. R.
Bhattarai
,
K.
Radcliff
,
J. Y.
Jang
,
Y. J.
Hwang
,
S.
Lee
,
S.
Yoon
, and
S.
Hahn
, “Quench behavior of a no-insulation coil wound with stainless steel cladding REBCO tape at 4.2 K,”
Supercond. Sci. Technol.
30
,
075001
(
2017
).
14.
Y.
Suetomi
,
T.
Yoshida
,
S.
Takahashi
,
T.
Takao
,
G.
Nishijima
,
H.
Kitaguchi
,
Y.
Miyoshi
,
M.
Hamada
,
K.
Saito
,
R.
Piao
,
Y.
Takeda
,
H.
Maeda
, and
Y.
Yanagisawa
, “Quench and self-protecting behaviour of an intra-layer no-insulation (LNI) REBCO coil at 31.4 T,”
Supercond. Sci. Technol.
34
,
064003
(
2021
).
15.
J.-B.
Song
,
X.
Chaud
,
B.
Borgnic
,
F.
Debray
,
P.
Fazilleau
, and
T.
Lécrevisse
, “Thermal and electrical behaviors of an MI HTS insert comprised of THEVA-SuperPower DP coils under high background magnetic fields at 4.2 K,”
IEEE Trans. Appl. Supercond.
30
,
4701806
(
2020
).
16.
M.
Krichler
,
A.
Hobl
,
E.
Theisen
, and
W.
Walter
, “Mechanically shocking a 2G-HTS magnet,” in
Applied Superconductivity Conference 2020, Virtual Conference
,
USA
,
2020
.
17.
S.
Hahn
and
N.-R. Team
, “Achievements, progressm and issues in No-insulation HTS coils,”in
13th European Conference on Applied Superconductivity
,
Geneva, Switzerland
,
2017
.
18.
G.
Kim
,
A.
Musso
,
J.
Bang
,
J. T.
Lee
,
C.
Im
,
K.
Choi
,
J.
Kim
,
M.
Breschi
,
K. J.
Han
, and
S.
Hahn
, “A numerical method for spatially-distributed transient simulation to replicate nonlinear ‘defect-irrelevant’ behaviors of no-insulation HTS coil,”
Supercond. Sci. Technol.
34
,
115004
(
2021
).
19.
U.
Bong
,
J.
Kim
,
J.
Bang
,
J.
Park
,
K. J.
Han
, and
S.
Hahn
, “‘Defect-irrelevant-winding’ no-insulation (RE) Ba2Cu3O7−x pancake coil in conduction-cooling operation,”
Supercond. Sci. Technol.
34
,
085003
(
2021
).
20.
S.
Hahn
,
Y.
Kim
,
D. K.
Park
,
K.
Kim
,
J. P.
Voccio
,
J.
Bascuñán
, and
Y.
Iwasa
, “No-insulation multi-width winding technique for high temperature superconducting magnet,”
Appl. Phys. Lett.
103
,
173511
(
2013
).
21.
S.
An
,
C.
Im
,
J.
Bang
,
J.
Kim
,
U.
Bong
,
J. T.
Lee
,
G.
Kim
,
K. J.
Han
, and
S.
Hahn
, “Fast distributed simulation of ‘defect-irrelevant’ behaviors of no-insulation HTS Coil,”
IEEE Trans. Appl. Supercond.
31
,
4601605
(
2021
).
22.
K.
Choi
,
J. T.
Lee
,
J.
Bang
,
U.
Bong
,
J.
Park
, and
S.
Hahn
, “Conceptual design of 240 mm 3 T no-insulation multi-width REBCO magnet,”
Progr. Supercond. Cryogenics
21
,
43
46
(
2019
).
23.
S.
Wimbush
and
N.
Strickland
, Critical current characterisation of SuNAM SAN04200 2G HTS superconducting wire,
2017
.
24.
S.
Hahn
,
D. K.
Park
,
J.
Bascuñán
, and
Y.
Iwasa
, “HTS pancake coils without turn-to-turn insulation,”
IEEE Trans. Appl. Supercond.
21
,
1592
1595
(
2011
).
25.
X.
Wang
,
S.
Hahn
,
Y.
Kim
,
J.
Bascuñán
,
J.
Voccio
,
H.
Lee
, and
Y.
Iwasa
, “Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil,”
Supercond. Sci. Technol.
26
,
035012
(
2013
).
26.
K.
Choi
,
U.
Bong
,
J.
Kim
,
J. H.
Park
,
J. T.
Lee
,
J.
Bang
,
G.
Kim
,
S. W.
Jung
, and
S.
Hahn
, “Upper limit estimation of resistive heating made by no-insulation HTS magnet having defects,”
IEEE Trans. Appl. Supercond.
31
,
4603005
(
2021
).
27.
K. R.
Bhattarai
,
K.
Kim
,
K.
Kim
,
K.
Radcliff
,
X.
Hu
,
C.
Im
,
T.
Painter
,
I.
Dixon
,
D.
Larbalestier
,
S.
Lee
, and
S.
Hahn
, “Understanding quench in no-insulation (NI) REBCO magnets through experiments and simulations,”
Supercond. Sci. Technol.
33
,
035002
(
2020
).
28.
Y.
Suetomi
,
K.
Yanagisawa
,
H.
Nakagome
,
M.
Hamada
,
H.
Maeda
, and
Y.
Yanagisawa
, “Mechanism of notable difference in the field delay times of no-insulation layer-wound and pancake-wound REBCO coils,”
Supercond. Sci. Technol.
29
,
105002
(
2016
).
29.
Y.
Liu
,
J.
Ou
,
R.
Gyuraki
,
F.
Schreiner
,
W. T. B.
de Sousa
,
M.
Noe
, and
F.
Grilli
, “Study of contact resistivity of a no-insulation superconducting coil,”
Supercond. Sci. Technol.
34
,
035009
(
2021
).
30.
A.
Gavrilin
,
D.
Kolb-Bond
,
K. L.
Kim
,
K.
Kim
,
W.
Marshall
, and
I.
Dixon
, “Quench and stability modelling of a metal-insulation multi-double-pancake high-temperature-superconducting coil,”
IEEE Trans. Appl. Supercond.
31
,
4601707
(
2021
).
You do not currently have access to this content.