It is widely accepted that micro- and nanoscale inhomogeneities govern the performance of many thin-film solar cell absorbers. These inhomogeneities yield material properties (e.g., composition, structure, and charge collection) that are challenging to correlate across length scales and measurement modalities. The challenge is compounded if a correlation is sought during device operation or in conditions that mimic aging under particular stressors (e.g., heat and electrical bias). Correlative approaches, particularly those based on synchrotron x-ray sources, are powerful since they can access several material properties in different modes (e.g., fluorescence, diffraction, and absorption) with minimal sample preparation. Small-scale laboratory x-ray instruments have begun to offer multi-modality but are typically limited by low x-ray photon flux, low spatial resolution, or specific sample sizes. To overcome these limitations, a characterization stage was developed to enable multi-scale, multi-modal operando measurements of industrially relevant photovoltaic devices. The stage offers compatibility across synchrotron x-ray facilities, enabling correlation between nanoscale x-ray fluorescence microscopy, microscale x-ray diffraction microscopy, and x-ray beam induced current microscopy, among others. The stage can accommodate device sizes up to 25 × 25 mm2, offering access to multiple regions of interest and increasing the statistical significance of correlated properties. The stage materials can sustain humid and non-oxidizing atmospheres, and temperature ranges encountered by photovoltaic devices in operational environments (e.g., from 25 to 100 °C). As a case study, we discuss the functionality of the stage by studying Se-alloyed CdTe photovoltaic devices aged in the stage between 25 and 100 °C.

1.
N. M.
Haegel
,
H.
Atwater
,
T.
Barnes
,
C.
Breyer
,
A.
Burrell
,
Y.-M.
Chiang
,
S.
De Wolf
,
B.
Dimmler
,
D.
Feldman
,
S.
Glunz
 et al., “
Terawatt-scale photovoltaics: Transform global energy
,”
Science
364
,
836
838
(
2019
).
2.
A.
Virtuani
,
D.
Pavanello
, and
G.
Friesen
, “
Overview of temperature coefficients of different thin film photovoltaic technologies
,” in (
2010
), pp.
4248
4252
.
3.
J. F.
Hiltner
and
J. R.
Sites
, “
Stability of CdTe solar cells at elevated temperatures: Bias, temperature, and Cu dependence
,”
AIP Conf. Proc.
462
,
170
175
(
1999
).
4.
Q.
Fu
,
X.
Tang
,
B.
Huang
,
T.
Hu
,
L.
Tan
,
L.
Chen
, and
Y.
Chen
, “
Recent progress on the long-term stability of perovskite solar cells
,”
Adv. Sci.
5
,
1700387
(
2018
).
5.
S.
Johnston
,
D.
Albin
,
P.
Hacke
,
S. P.
Harvey
,
H.
Moutinho
,
C.-S.
Jiang
,
C.
Xiao
,
A.
Parikh
,
M.
Nardone
,
M.
Al-Jassim
 et al., “
Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light
,”
Sol. Energy Mater. Sol. Cells
178
,
46
51
(
2018
).
6.
V. G.
Karpov
,
A. D.
Compaan
, and
D.
Shvydka
, “
Effects of nonuniformity in thin-film photovoltaics
,”
Appl. Phys. Lett.
80
,
4256
4258
(
2002
).
7.
D.
Mao
,
G.
Blatz
,
C. E.
Wickersham
, Jr.
, and
M.
Gloeckler
, “
Correlative impurity distribution analysis in cadmium telluride (CdTe) thin-film solar cells by ToF-SIMS 2D imaging
,”
Sol. Energy Mater. Sol. Cells
157
,
65
73
(
2016
).
8.
E.
Colegrove
,
J.-H.
Yang
,
S. P.
Harvey
,
M. R.
Young
,
J. M.
Burst
,
J. N.
Duenow
,
D. S.
Albin
,
S.-H.
Wei
, and
W. K.
Metzger
, “
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
,”
J. Phys. D: Appl. Phys.
51
,
075102
(
2018
).
9.
M. E.
Stuckelberger
,
T.
Nietzold
,
B. M.
West
,
R.
Farshchi
,
D.
Poplavskyy
,
J.
Bailey
,
B.
Lai
,
J. M.
Maser
, and
M. I.
Bertoni
, “
How does CIGS performance depend on temperature at the microscale?
,”
IEEE J. Photovoltaics
8
,
278
287
(
2017
).
10.
B. M.
West
,
M.
Stuckelberger
,
H.
Guthrey
,
L.
Chen
,
B.
Lai
,
J.
Maser
,
V.
Rose
,
W.
Shafarman
,
M.
Al-Jassim
, and
M. I.
Bertoni
, “
Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells
,”
Nano Energy
32
,
488
493
(
2017
).
11.
D.
Kumar
,
R.
Sarkar
,
V.
Singh
,
S.
Kumar
,
C.
Mondal
, and
P.
Ghosal
, “
Study of diffusionless and diffusional transformations using in situ cooling and heating techniques in a scanning electron microscope
,”
Philos. Trans. R. Soc., A
378
,
20200284
(
2020
).
12.
H.
Borkar
,
S.
Seifeddine
, and
A. E. W.
Jarfors
, “
In-situ EBSD study of deformation behavior of Al–Si–Cu alloys during tensile testing
,”
Mater. Des.
84
,
36
47
(
2015
).
13.
B.
He
,
Y.
Zhang
,
X.
Liu
, and
L.
Chen
, “
In-situ transmission electron microscope techniques for heterogeneous catalysis
,”
ChemCatChem
12
,
1853
(
2020
).
14.
J. R.
Jinschek
, “
Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions
,”
Chem. Commun.
50
,
2696
2706
(
2014
).
15.
B.
Chen
,
Q.
Gao
,
L.
Chang
,
Y.
Wang
,
Z.
Chen
,
X.
Liao
,
H. H.
Tan
,
J.
Zou
,
S. P.
Ringer
, and
C.
Jagadish
, “
Attraction of semiconductor nanowires: An in situ observation
,”
Acta Mater.
61
,
7166
7172
(
2013
).
16.
S. D.
Marks
,
P.
Quan
,
R.
Liu
,
M. J.
Highland
,
H.
Zhou
,
T. F.
Kuech
,
G. B.
Stephenson
, and
P. G.
Evans
, “
Instrument for in situ hard x-ray nanobeam characterization during epitaxial crystallization and materials transformations
,”
Rev. Sci. Instrum.
92
,
023908
(
2021
).
17.
G.
Eres
,
C. M.
Rouleau
,
Q.
Lu
,
Z.
Zhang
,
E.
Benda
,
H. N.
Lee
,
J. Z.
Tischler
, and
D. D.
Fong
, “
Experimental setup combining in situ hard x-ray photoelectron spectroscopy and real-time surface x-ray diffraction for characterizing atomic and electronic structure evolution during complex oxide heterostructure growth
,”
Rev. Sci. Instrum.
90
,
093902
(
2019
).
18.
B. M.
West
,
M.
Stuckelberger
,
B.
Lai
,
J.
Maser
, and
M. I.
Bertoni
, “
Nanoscale growth kinetics of Cu(In,Ga)Se2 absorbers
,”
J. Phys. Chem. C
122
,
22897
(
2018
).
19.
X.
Liu
,
D.
Wang
,
G.
Liu
,
V.
Srinivasan
,
Z.
Liu
,
Z.
Hussain
, and
W.
Yang
, “
Distinct charge dynamics in battery electrodes revealed by in situ and operando soft x-ray spectroscopy
,”
Nat. Commun.
4
,
2568
(
2013
).
20.
G. N.
Hall
,
M.
Stuckelberger
,
T.
Nietzold
,
J.
Hartman
,
J.-S.
Park
,
J.
Werner
,
B.
Niesen
,
M. L.
Cummings
,
V.
Rose
,
C.
Ballif
,
M. K.
Chan
,
D. P.
Fenning
, and
M. I.
Bertoni
, “
The role of water in the reversible optoelectronic degradation of hybrid perovskites at low pressure
,”
J. Phys. Chem. C
121
,
25659
25665
(
2017
).
21.
M.
Stuckelberger
,
B.
West
,
S.
Husein
,
H.
Guthrey
,
M.
Al-Jassim
,
R.
Chakraborty
,
T.
Buonassisi
,
J. M.
Maser
,
B.
Lai
,
B.
Stripe
 et al., “
Latest developments in the x-ray based characterization of thin-film solar cells
,” in
42nd IEEE Photovoltaic Specialist Conference
(
IEEE
,
2015
), pp.
1
6
.
22.
M.
Stuckelberger
,
B.
West
,
T.
Nietzold
,
B.
Lai
,
J. M.
Maser
,
V.
Rose
, and
M. I.
Bertoni
, “
Engineering solar cells based on correlative x-ray microscopy
,”
J. Mater. Res.
32
,
1825
1854
(
2017
).
23.
M.
Kodur
,
R. E.
Kumar
,
Y.
Luo
,
D. N.
Cakan
,
X.
Li
,
M.
Stuckelberger
, and
D. P.
Fenning
, “
X-ray microscopy of halide perovskites: Techniques, applications, and prospects
,”
Adv. Energy Mater.
10
,
1903170
(
2020
).
24.
L. T.
Schelhas
,
Z.
Li
,
J. A.
Christians
,
A.
Goyal
,
P.
Kairys
,
S. P.
Harvey
,
D. H.
Kim
,
K. H.
Stone
,
J. M.
Luther
,
K.
Zhu
 et al., “
Insights into operational stability and processing of halide perovskite active layers
,”
Energy Environ. Sci.
12
,
1341
1348
(
2019
).
25.
M. I.
Bertoni
,
D. P.
Fenning
,
M.
Rinio
,
V.
Rose
,
M.
Holt
,
J.
Maser
, and
T.
Buonassisi
, “
Nanoprobe x-ray fluorescence characterization of defects in large-area solar cells
,”
Energy Environ. Sci.
4
,
4252
4257
(
2011
).
26.
M. E.
Stuckelberger
,
T.
Nietzold
,
B. M.
West
,
B.
Lai
,
J. M.
Maser
,
V.
Rose
, and
M. I.
Bertoni
, “
X-ray beam induced voltage: A novel technique for electrical nanocharacterization of solar cells
,” in
44th IEEE Photovoltaic Specialist Conference
(
IEEE
,
2017
), pp.
2179
2184
.
27.
C.
Ossig
,
T.
Nietzold
,
B.
West
,
M.
Bertoni
,
G.
Falkenberg
,
C. G.
Schroer
, and
M. E.
Stuckelberger
, “
X-ray beam induced current measurements for multi-modal x-ray microscopy of solar cells
,”
J. Visualized Exp.
150
,
e60001
(
2019
).
28.
E.
Zillner
,
A.
Paul
,
J.
Jutimoosik
,
S.
Chandarak
,
T.
Monnor
,
S.
Rujirawat
,
R.
Yimnirun
,
X. Z.
Lin
,
A.
Ennaoui
,
T.
Dittrich
, and
M.
Lux-Steiner
, “
Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron x-ray absorption near edge structure analysis
,”
Appl. Phys. Lett.
102
,
221908
(
2013
).
29.
B.
Johnson
,
J.
Klaer
,
S.
Merdes
,
M.
Gorgoi
,
B.
Höpfner
,
A.
Vollmer
, and
I.
Lauermann
, “
Limitations of near edge x-ray absorption fine structure as a tool for observing conduction bands in chalcopyrite solar cell heterojunctions
,”
J. Electron Spectrosc. Relat. Phenom.
190
,
42
46
(
2013
).
30.
H.
Mönig
,
C.-H.
Fischer
,
R.
Caballero
,
C. A.
Kaufmann
,
N.
Allsop
,
M.
Gorgoi
,
R.
Klenk
,
H.-W.
Schock
,
S.
Lehmann
,
M. C.
Lux-Steiner
, and
I.
Lauermann
, “
Surface Cu depletion of Cu(In,Ga)Se2 films: An investigation by hard x-ray photoelectron spectroscopy
,”
Acta Mater.
57
,
3645
3651
(
2009
).
31.
M. C.
Schubert
,
J.
Schön
,
P.
Gundel
,
H.
Habenicht
,
W.
Kwapil
, and
W.
Warta
, “
Imaging of metal impurities in silicon by luminescence spectroscopy and synchrotron techniques
,”
J. Electron. Mater.
39
,
787
793
(
2010
).
32.
H. F.
Dam
,
T. R.
Andersen
,
E. B. L.
Pedersen
,
K. T. S.
Thydén
,
M.
Helgesen
,
J. E.
Carlé
,
P. S.
Jørgensen
,
J.
Reinhardt
,
R. R.
Søndergaard
,
M.
Jørgensen
,
E.
Bundgaard
,
F. C.
Krebs
, and
J. W.
Andreasen
, “
Enabling flexible polymer tandem solar cells by 3D ptychographic imaging
,”
Adv. Energy Mater.
5
,
1400736
(
2015
).
33.
T.
Buonassisi
,
A. A.
Istratov
,
M. D.
Pickett
,
M. A.
Marcus
,
G.
Hahn
,
S.
Riepe
,
J.
Isenberg
,
W.
Warta
,
G.
Willeke
,
T. F.
Ciszek
 et al., “
Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current
,”
Appl. Phys. Lett.
87
,
044101
(
2005
).
34.
C.
Ossig
,
C.
Strelow
,
J.
Flügge
,
A.
Kolditz
,
J.
Siebels
,
J.
Garrevoet
,
K.
Spiers
,
M.
Seyrich
,
D.
Brückner
,
N.
Pyrlik
 et al., “
Four-fold multi-modal x-ray microscopy measurements of a Cu(In,Ga)Se2 solar cell
,”
Materials
14
,
228
(
2021
).
35.
R.
Chakraborty
,
J.
Serdy
,
B.
West
,
M.
Stuckelberger
,
B.
Lai
,
J.
Maser
,
M. I.
Bertoni
,
M. L.
Culpepper
, and
T.
Buonassisi
, “
Development of an in situ temperature stage for synchrotron x-ray spectromicroscopy
,”
Rev. Sci. Instrum.
86
,
113705
(
2015
).
36.
E.
Stavitski
,
M. H. F.
Kox
,
I.
Swart
,
F. M. F.
de Groot
, and
B. M.
Weckhuysen
, “
In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals
,”
Angew. Chem.
120
,
3599
3603
(
2008
).
37.
M. I.
Ahmad
,
D. G.
Van Campen
,
J. D.
Fields
,
J.
Yu
,
V. L.
Pool
,
P. A.
Parilla
,
D. S.
Ginley
,
M. F. A. M.
Van Hest
, and
M. F.
Toney
, “
Rapid thermal processing chamber for in-situ x-ray diffraction
,”
Rev. Sci. Instrum.
86
,
013902
(
2015
).
38.
A.
Ulvestad
,
S. O.
Hruszkewycz
,
M. V.
Holt
,
M. O.
Hill
,
I.
Calvo-Almazán
,
S.
Maddali
,
X.
Huang
,
H.
Yan
,
E.
Nazaretski
,
Y. S.
Chu
,
L. J.
Lauhon
,
N.
Rodkey
,
M. I.
Bertoni
, and
M. E.
Stuckelberger
, “
Multimodal x-ray imaging of grain-level properties and performance in a polycrystalline solar cell
,”
J. Synchrotron Radiat.
26
,
1316
1321
(
2019
).
39.
J. E.
Parker
,
M.
Gomez-Gonzalez
,
Y.
Van Lishout
,
H.
Islam
,
D.
Duran Martin
,
D.
Ozkaya
,
P. D.
Quinn
, and
M. E.
Schuster
, “
A cell design for correlative hard x-ray nanoprobe and electron microscopy studies of catalysts under in situ conditions
,”
J. Synchrotron Radiat.
29
,
431
438
(
2022
).
40.
W.
Yun
,
B.
Lai
,
D.
Shu
,
A.
Khounsary
,
Z.
Cai
,
J.
Barraza
, and
D.
Legnini
, “
Design of a dedicated beamline for x-ray microfocusing- and coherence-based techniques at the Advanced Photon Source
,”
Rev. Sci. Instrum.
67
,
3373
(
1996
).
41.
S.
Wakatsuki
,
K. O.
Hodgson
,
D.
Eliezer
,
M.
Rice
,
S.
Hubbard
,
N.
Gillis
,
S.
Doniach
, and
U.
Spann
, “
Small-angle x-ray scattering/diffraction system for studies of biological and other materials at the Stanford Synchrotron Radiation Laboratory
,”
Rev. Sci. Instrum.
63
,
1736
1740
(
1992
).
42.
R.
Roesch
,
T.
Faber
,
E.
von Hauff
,
T. M.
Brown
,
M.
Lira-Cantu
, and
H.
Hoppe
, “
Procedures and practices for evaluating thin-film solar cell stability
,”
Adv. Energy Mater.
5
,
1501407
(
2015
).
43.
J. H.
Wohlgemuth
and
S.
Kurtz
, “
Using accelerated testing to predict module reliability
,” in (
2011
), pp.
003601
003605
.
44.
D. S.
Albin
, “
Accelerated stress testing and diagnostic analysis of degradation in CdTe solar cells
,”
Proc. SPIE
7048
,
166
175
(
2008
).
45.
B. M.
Gordon
, “
Sensitivity calculations for multielemental trace analysis by synchrotron radiation induced x-ray fluorescence
,”
Nucl. Instrum. Methods Phys. Res.
204
,
223
229
(
1982
).
46.
R. F.
Santos
,
S. M.
Cruz
,
S. R.
Krzyzaniak
,
F. A.
Duarte
,
P. A.
Mello
, and
E. M. M.
Flores
, “
Trace metal impurities determination in high-purity polyimide by plasma-based techniques
,”
Microchem. J.
146
,
492
497
(
2019
).
47.
R.
Jenkins
,
R.
Manne
,
R.
Robin
, and
C.
Senemaud
, “
Nomenclature system for x-ray spectroscopy
,”
Pure Appl. Chem.
63
,
735
746
(
1991
).
48.
W. T.
Elam
,
B. D.
Ravel
, and
J. R.
Sieber
, “
A new atomic database for x-ray spectroscopic calculations
,”
Radiat. Phys. Chem.
63
,
121
128
(
2002
).
49.
S.
Vogt
, “
MAPS: A set of software tools for analysis and visualization of 3D x-ray fluorescence data sets
,”
J. Phys. IV
104
,
635
638
(
2003
).
50.
T.
Nietzold
,
B. M.
West
,
M.
Stuckelberger
,
B.
Lai
,
S.
Vogt
, and
M. I.
Bertoni
, “
Quantifying x-ray fluorescence data using MAPS
,”
J. Visualized Exp.
132
,
56042
(
2018
).
51.
G. D.
Evangelidis
and
E. Z.
Psarakis
, “
Parametric image alignment using enhanced correlation coefficient maximization
,”
IEEE Trans. Pattern Anal. Mach. Intell.
30
,
1858
1865
(
2008
).
52.
B. M.
West
,
M.
Stuckelberger
,
A.
Jeffries
,
S.
Gangam
,
B.
Lai
,
B.
Stripe
,
J.
Maser
,
V.
Rose
,
S.
Vogt
, and
M. I.
Bertoni
, “
X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study
,”
J. Synchrotron Radiat.
24
,
288
295
(
2017
).
53.
C.
Ziska
,
C.
Ossig
,
N.
Pyrlik
,
R.
Carron
,
E.
Avancini
,
G.
Fevola
,
A.
Kolditz
,
J.
Siebels
,
T.
Kipp
,
Z.
Cai
,
M. V.
Holt
, and
M. E.
Stuckelberger
, “
Quantifying the elemental distribution in solar cells from x-ray fluorescence measurements with multiple detector modules
,” in
47th IEEE Photovoltaic Specialists Conference
(
IEEE
,
2020
), pp.
1085
1092
.
54.
T.
Walker
,
M. E.
Stuckelberger
,
T.
Nietzold
,
N.
Mohan-Kumar
,
C.
Ossig
,
M.
Kahnt
,
F.
Wittwer
,
B.
Lai
,
D.
Salomon
,
E.
Colegrove
, and
M. I.
Bertonia
, “
The nanoscale distribution of copper and its influence on charge collection in CdTe solar cells
,”
Nano Energy
91
,
106595
(
2022
).
55.
R.
Gottschalg
,
D. G.
Infield
, and
M. J.
Kearney
, “
Experimental study of variations of the solar spectrum of relevance to thin film solar cells
,”
Sol. Energy Mater. Sol. Cells
79
,
527
537
(
2003
).
56.
V. N.
Rai
,
B.
Jain
,
C.
Mukherjee
,
P.
Choudhary
,
M.
Varshney
, and
A.
Mishra
, “
Effect of gamma irradiation on optical properties of Kapton
,”
AIP Conf. Proc.
2115
,
030288
(
2019
).
57.
H. S.
Virk
, “
Physical and chemical response of 70 MeV carbon ion irradiated Kapton-H polymer
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
191
,
739
743
(
2002
).
58.
D. C.
Palmer
, “
Visualization and analysis of crystal structures using CrystalMaker software
,”
Z. Kristallogr. - Cryst. Mater.
230
,
559
572
(
2015
).
59.
A. E.
Grigorescu
and
C. W.
Hagen
, “
Resists for sub-20 nm electron beam lithography with a focus on HSQ: State of the art
,”
Nanotechnology
20
,
292001
(
2009
).
60.
W. R.
Wilcox
and
T. J.
LaChapelle
, “
Mechanism of gold diffusion into silicon
,”
J. Appl. Phys.
35
,
240
246
(
1964
).
61.
W. M.
Bullis
, “
Properties of gold in silicon
,”
Solid-State Electron.
9
,
143
168
(
1966
).
62.
M.
Nardone
, “
Towards understanding junction degradation in cadmium telluride solar cells
,”
J. Appl. Phys.
115
,
234502
(
2014
).
63.
C.-H.
Su
, “
Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067 K
,”
J. Appl. Phys.
103
,
084903
(
2008
).
64.
I.
Turkevych
,
R.
Grill
,
J.
Franc
,
E.
Belas
,
P.
Höschl
, and
P.
Moravec
, “
High-temperature electron and hole mobility in CdTe
,”
Semicond. Sci. Technol.
17
,
1064
1066
(
2002
).
65.
M. E.
Stuckelberger
,
T.
Nietzold
,
B.
West
,
R.
Farshchi
,
D.
Poplavskyy
,
J.
Bailey
,
B.
Lai
,
J. M.
Maser
, and
M. I.
Bertoni
, “
Defect activation and annihilation in CIGS solar cells: An operando x-ray microscopy study
,”
J. Phys.: Energy
2
,
025001
(
2020
).
66.
A.
Saadaldin
,
A.
Slyamov
,
M. E.
Stuckelberger
,
P. S.
Jørgensen
,
C.
Rein
,
M.
Mar Lucas
,
T.
Ramos
,
A.
Rodriguez-Fernandez
,
D.
Bernard
, and
J. W.
Andreasen
, “
Multi-modal characterization of kesterite thin-film solar cells: Experimental results and numerical interpretation
,”
Faraday Discuss.
(published online
2022
).
67.
M.
Stuckelberger
,
T.
Nietzold
,
G. N.
Hall
,
B.
West
,
J.
Werner
,
B.
Niesen
,
C.
Ballif
,
V.
Rose
,
D. P.
Fenning
, and
M. I.
Bertoni
, “
Charge collection in hybrid perovskite solar cells: Relation to the nanoscale elemental distribution
,”
IEEE J. Photovoltaics
7
,
590
597
(
2017
).
68.
N.
Abbas Shah
,
A.
Ali
,
Z.
Ali
,
A.
Maqsood
, and
A. K. S.
Aqili
, “
Properties of Te-rich cadmium telluride thin films fabricated by closed space sublimation technique
,”
J. Cryst. Growth
284
,
477
485
(
2005
).
69.
D. E.
Swanson
,
J. R.
Sites
, and
W. S.
Sampath
, “
Co-sublimation of CdSexTe1−x layers for CdTe solar cells
,”
Sol. Energy Mater. Sol. Cells
159
,
389
394
(
2017
).
70.
T. C. M.
Santhosh
,
K. V.
Bangera
, and
G. K.
Shivakumar
, “
Synthesis and band gap tuning in CdSe(1−x)Te(x) thin films for solar cell applications
,”
Sol. Energy
153
,
343
347
(
2017
).
71.
C. L.
Perkins
,
D. L.
McGott
,
M. O.
Reese
, and
W. K.
Metzger
, “
SnO2-catalyzed oxidation in high-efficiency CdTe solar cells
,”
ACS Appl. Mater. Interfaces
11
,
13003
13010
(
2019
).
72.
I.
Visoly-Fisher
,
K. D.
Dobson
,
J.
Nair
,
E.
Bezalel
,
G.
Hodes
, and
D.
Cahen
, “
Factors affecting the stability of CdTe/CdS solar cells deduced from stress tests at elevated temperature
,”
Adv. Funct. Mater.
13
,
289
299
(
2003
).
73.
C.
Gretener
,
J.
Perrenoud
,
L.
Kranz
,
E.
Cheah
,
M.
Dietrich
,
S.
Buecheler
, and
A. N.
Tiwari
, “
New perspective on the performance stability of CdTe solar cells
,”
Sol. Energy Mater. Sol. Cells
146
,
51
57
(
2016
).
74.
E.
Artegiani
,
D.
Menossi
,
H.
Shiel
,
V.
Dhanak
,
J. D.
Major
,
A.
Gasparotto
,
K.
Sun
, and
A.
Romeo
, “
Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells
,”
Prog. Photovoltaics: Res. Appl.
27
,
706
715
(
2019
).
75.
D.
Krasikov
,
D.
Guo
,
S.
Demtsu
, and
I.
Sankin
, “
Comparative study of As and Cu doping stability in CdSeTe absorbers
,”
Sol. Energy Mater. Sol. Cells
224
,
111012
(
2021
).
76.
M.
Amarasinghe
,
E.
Colegrove
,
J.
Moseley
,
H.
Moutinho
,
D.
Albin
,
J.
Duenow
,
S.
Jensen
,
J.
Kephart
,
W.
Sampath
,
S.
Sivananthan
 et al., “
Obtaining large columnar CdTe grains and long lifetime on nanocrystalline CdSe, MgZnO, or CdS layers
,”
Adv. Energy Mater.
8
,
1702666
(
2018
).
77.
J.
Ramanujam
,
D. M.
Bishop
,
T. K.
Todorov
,
O.
Gunawan
,
J.
Rath
,
R.
Nekovei
,
E.
Artegiani
, and
A.
Romeo
, “
Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review
,”
Prog. Mater. Sci.
110
,
100619
(
2020
).
78.
J.
Segura-Ruiz
,
G.
Martínez-Criado
,
C.
Denker
,
J.
Malindretos
, and
A.
Rizzi
, “
Phase separation in single InxGa1−xN nanowires revealed through a hard x-ray synchrotron nanoprobe
,”
Nano Lett.
14
,
1300
1305
(
2014
).

Supplementary Material

You do not currently have access to this content.