The Space Plasma Environment Research Facility uses a coil system with the corresponding pulsed power supply (PPS) system to generate a very flexible magnetosphere-like magnetic configuration. Its purpose is to investigate the 3D asymmetric reconnection and the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration, as well as the physical mechanism of the dipolarization front in the magnetotail. The control and monitoring function of the PPS system is realized by the integrated control subsystem, which adopts a two-layer network structure of the control layer and device layer and is developed based on the Experimental Physics and Industrial Control System framework. The control layer includes a remote control system that consists of an engineer station and an operator station and the data storage system. Both the engineer station and operator station are developed by Control System Studio. The data storage system is based on the combination of the Hierarchical Data Format 5 database and MySQL database, and the data management software of the data storage system is developed based on LabVIEW. The synchronous trigger device, the safety interlocking device, the local controller of each set of PPS, and the module controller of each discharge module are the device layer. Their hardware is designed and developed based on the Field Programmable Gate Array, and their software is based on the Quartus II platform and programmed with the Verilog Hardware Description Language language. The function of the integrated control subsystem is verified by the discharge test of the PPS system.

1.
A.
Mao
,
Y.
Ren
,
H.
Ji
,
P.
E
,
K.
Han
,
Z.
Wang
,
Q.
Xiao
, and
L.
Li
, “Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF,”
Plasma Sci. Technol.
19
(
3
),
034002
(
2017
).
2.
P. A.
Cassak
and
S. A.
Fuselier
,
Reconnection at Earth’s Dayside Magnetopause
(
Springer International Publishing
,
Cham
,
2016
), pp.
213
276
3.
R.
Wang
,
R.
Nakamura
,
Q.
Lu
,
W.
Baumjohann
,
R. E.
Ergun
,
J. L.
Burch
,
M.
Volwerk
,
A.
Varsani
,
T.
Nakamura
,
W.
Gonzalez
,
B.
Giles
,
D.
Gershman
, and
S.
Wang
, “Electronscale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection,”
Phys. Rev. Lett.
118
,
175101
(
2017
).
4.
C.
Huang
,
M.
Wu
,
Q.
Lu
,
R.
Wang
, and
S.
Wang
, “Electron acceleration in the dipolarization front driven by magnetic reconnection,”
J. Geophys. Res.: Space Phys.
120
,
1759
1765
, (
2015
).
5.
Y. X.
Hao
,
Q. G.
Zong
,
X. Z.
Zhou
,
R.
Rankin
,
X. R.
Chen
,
Y.
Liu
,
S. Y.
Fu
,
D. N.
Baker
,
H. E.
Spence
,
J. B.
Blake
,
G. D.
Reeves
, and
S. G.
Claudepierre
, “Global-scale ULF waves associated with SSC accelerate magnetospheric ultrarelativistic electrons,”
J. Geophys. Res.: Space Phys.
124
,
1525
1538
, (
2019
).
6.
R.
Nakamura
,
W.
Baumjohann
,
B.
Klecker
,
Y.
Bogdanova
,
H. R. A.
Balogh
,
J. M.
Bosqued
,
I.
Dandouras
,
J. A.
Sauvaud
,
K.-H.
Glassmeier
,
L.
Kistler
,
C.
Mouikis
,
T. L.
Zhang
,
H.
Eichelberger
, and
A.
Runov
, “Motion of the dipolarization front during a flow burst event observed by cluster,”
Geophys. Res. Lett.
29
,
3-1
3-4
, (
2002
).
7.
D.
Schmid
,
R.
Nakamura
,
M.
Volwerk
,
F.
Plaschke
,
Y.
Narita
,
W.
Baumjohann
,
W.
Magnes
,
D.
Fischer
,
H. U.
Eichelberger
,
R. B.
Torbert
,
C. T.
Russell
,
R. J.
Strangeway
,
H. K.
Leinweber
,
G.
Le
,
K. R.
Bromund
,
B. J.
Anderson
,
J. A.
Slavin
, and
E. L.
Kepko
, “A comparative study of dipolarization fronts at MMS and cluster,”
Geophys. Res. Lett.
43
,
6012
6019
, (
2016
).
8.
P.
E
,
W.
Ling
,
A.
Mao
,
Q.
Xiao
,
J.
Guan
, and
Z.
Zhang
, “Study on the magnetic forces of the dipole in the SPERF,”
IEEE Trans. Plasma Sci.
48
(
1
),
266
273
(
2020
).
9.
Q.
Xiao
,
Z.
Wang
,
X.
Wang
,
C.
Xiao
,
X.
Yang
, and
J.
Zheng
, “Conceptual design of dipole research experiment (DREX),”
Plasma Sci. Technol.
19
(
3
),
035301
(
2017
).
10.
P.
E
,
J.
Guan
,
W.
Ling
,
X.
Ma
,
A.
Mao
,
W.
Deng
,
M.
Ding
,
S.
Li
,
C.
Kang
, and
H.
Li
, “An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): Modular design method and components selection,”
Rev. Sci. Instrum.
92
(
3
),
034709
(
2021
).
11.
D.
Leone
,
V.
Carrubba
,
S.
Mazzaro
,
M.
Nobili
,
D.
Cucè
, and
D.
Hamilton
, “EPICS application for ITER RH supervisory control system,”
Fusion Eng. Des.
169
,
112429
(
2021
).
12.
K. H.
Kim
,
C. J.
Ju
,
M. K.
Kim
,
M. K.
Park
,
J. W.
Choi
,
M. C.
Kyum
,
M.
Kwon
, and
The KSTAR Control Team
, “The KSTAR integrated control system based on EPICS,”
Fusion Eng. Des.
81
(
15–17
),
1829
1833
(
2006
).
13.
F.
Xia
,
L.
Pan
,
L.
Zhao
,
W.
Pan
,
X.
Song
,
X.
Li
,
C.
Wang
,
J.
Lan
,
L.
Chen
, and
K.
Nakamura
, “The initial design of process control system based on EPICS for HL-2A & HL-2M,”
Plasma Fusion Res.
7
,
2405048
(
2012
).
14.
P.
E
,
J.
Guan
,
C.
Jin
,
A.
Mao
,
X.
Ma
,
W.
Deng
,
M.
Ding
,
C.
Kang
,
S.
Li
,
J.
Xiao
,
W.
Tong
, and
H.
Li
, “An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): The subsystem for the magnetopause shape control coils,”
Rev. Sci. Instrum.
92
(
6
),
064709
(
2021
).
15.
A.
Mao
,
X.
Ma
,
P.
E
,
J.
Guan
,
W.
Ling
,
L.
Li
, and
H.
Li
, “An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF). I. The overall design,”
Rev. Sci. Instrum.
91
(
8
),
084702
(
2020
).
You do not currently have access to this content.