We present a current modulation technique for diode laser systems, which is specifically designed for high-bandwidth laser frequency stabilization and wideband frequency modulation with a flat transfer function. It consists of a dedicated current source and an impedance matching circuit both placed close to the laser diode. The transfer behavior of the system is analyzed under realistic conditions employing an external cavity diode laser (ECDL) system. We achieve a phase lag smaller than 90° up to 25 MHz and a gain flatness of ±3 dB in the frequency range of DC to 100 MHz, while the passive stability of the laser system is not impaired. The potential of the current modulation scheme is demonstrated in an optical phase-locked loop between two ECDL systems with a phase noise of 42 mradrms. The design files are available as an open-source project.

1.
E. D.
Black
, “
An introduction to Pound–Drever–Hall laser frequency stabilization
,”
Am. J. Phys.
69
,
79
87
(
2001
).
2.
W.
Demtröder
,
Laser Spectroscopy 2: Experimental Techniques
(
Springer
,
Berlin Heidelberg
,
2015
).
3.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
,
J.
Hough
,
G. M.
Ford
,
A. J.
Munley
, and
H.
Ward
, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B: Lasers Opt.
31
,
97
105
(
1983
).
4.
G.
Santarelli
,
A.
Clairon
,
S. N.
Lea
, and
G. M.
Tino
, “
Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz
,”
Opt. Commun.
104
,
339
344
(
1994
).
5.
J.
Appel
,
A.
MacRae
, and
A. I.
Lvovsky
, “
A versatile digital GHz phase lock for external cavity diode lasers
,”
Meas. Sci. Technol.
20
,
055302
(
2009
).
6.
S. H.
Yim
,
S.-B.
Lee
,
T. Y.
Kwon
, and
S. E.
Park
, “
Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry
,”
Appl. Phys. B: Lasers Opt.
115
,
491
495
(
2014
).
7.
K. G.
Libbrecht
and
J. L.
Hall
, “
A low-noise high-speed diode laser current controller
,”
Rev. Sci. Instrum.
64
,
2133
2135
(
1993
).
8.
C. J.
Erickson
,
M.
Van Zijll
,
G.
Doermann
, and
D. S.
Durfee
, “
An ultrahigh stability, low-noise laser current driver with digital control
,”
Rev. Sci. Instrum.
79
,
073107
(
2008
).
9.
T.
Preuschoff
 et al. (
2022
). Github. https://github.com/TU-Darmstadt-APQ/Laser_Backplane_DVI.
10.
D. H.
Sheingold
, “
Impedance and admittance transformations using operational amplifiers
,”
Lightning Empiricist
12
,
1
8
(
1964
).
11.
Datasheet, ADA4807-2, 180 MHz, Rail-to-Rail Input/Output Dual Amplifiers, Analog Devices (09-2015), rev. B.
12.
P.
Baus
 et al., “
An open-source, low noise, high stability digital laser driver for the next generation of laser diodes
” (unpublished).
13.
X.
Baillard
,
A.
Gauguet
,
S.
Bize
,
P.
Lemonde
,
P.
Laurent
,
A.
Clairon
, and
P.
Rosenbusch
, “
Interference-filter-stabilized external-cavity diode lasers
,”
Opt. Commun.
266
,
609
613
(
2006
).
14.
A.
Martin
,
P.
Baus
, and
G.
Birkl
, “
External cavity diode laser setup with two interference filters
,”
Appl. Phys. B
122
,
298
(
2016
).
15.
K.
Petermann
, “
Frequency-modulation characteristics of laser diodes
,” in
Laser Diode Modulation and Noise
(
Springer
,
Netherlands, Dordrecht
,
1988
), Chap. 5, pp.
119
144
.
16.
S.
Kobayashi
,
Y.
Yamamoto
,
M.
Ito
, and
T.
Kimura
, “
Direct frequency modulation in AlGaAs semiconductor lasers
,”
IEEE Trans. Microwave Theory Tech.
30
,
428
441
(
1982
).
17.
T.
Preuschoff
,
M.
Schlosser
, and
G.
Birkl
, “
Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red Pitaya)
,”
Rev. Sci. Instrum.
91
,
083001
(
2020
).
18.
F.
Riehle
,
Frequency Standards: Basics and Applications
(
Wiley VCH
,
2004
).

Supplementary Material

You do not currently have access to this content.