Materials engineering by neutron scattering (MENUS) at the second target station will be a transformational high-flux, versatile, multiscale materials engineering diffraction beamline with unprecedented new capabilities for the study of complex materials and structures. It will support both fundamental and applied materials research in a broad range of fields. MENUS will combine unprecedented long-wavelength neutron flux and unique detector coverage to enable real-time studies of complex structural and functional materials under external stimuli. The incorporated small angle neutron scattering and transmission/imaging capabilities will extend its sensitivity to larger length scales and higher spatial resolution. Multimodal MENUS will provide crystallographic and microstructure data to the materials science and engineering community to understand lattice strain/phase transition/microstructure/texture evolution in three orthogonal directions in complex material systems under combined extreme applied conditions. The capabilities of MENUS will open new scientific opportunities and meet the research needs for science challenges to enable studies of a range of phenomena and answer the key questions in material design/exploration, advanced material processing, transformative manufacturing, and material operations of national impacts in our daily life.

1.
First Experiments: New Science Opportunities at the Spallation Neutron Source Second Target Station,
ORNL
,
2019
.
2.
T.
Yang
,
Y. L.
Zhao
,
Y.
Tong
,
Z. B.
Jiao
,
J.
Wei
,
J. X.
Cai
,
X. D.
Han
,
D.
Chen
,
A.
Hu
,
J. J.
Kai
,
K.
Lu
,
Y.
Liu
, and
C. T.
Liu
,
Science
362
,
933
(
2018
).
3.
H.
Yang
,
D.
Yu
,
Y.
Chen
,
J.
Mu
,
Y. D.
Wang
, and
K.
An
,
Mater. Sci. Eng.: A
680
,
324
(
2017
).
4.
H. D.
Liu
,
Y.
Chen
,
S.
Hy
,
K.
An
,
S.
Venkatachalam
,
D. N.
Qian
,
M. H.
Zhang
, and
Y. S.
Meng
,
Adv. Energy Mater.
6
,
1502143
(
2016
).
5.
L.
Cai
,
K.
An
,
Z. L.
Feng
,
C. D.
Liang
, and
S. J.
Harris
,
J. Power Sources
236
,
163
(
2013
).
6.
C. A.
Calhoun
,
E.
Garlea
,
R. P.
Mulay
,
T. A.
Sisneros
, and
S. R.
Agnew
,
Acta Mater.
85
,
168
(
2015
).
7.
S. Y.
Huang
,
K.
An
,
Y.
Gao
, and
A.
Suzuki
,
Metall. Mater. Trans. A
49
,
740
(
2018
).
8.
Z. C.
Sims
,
O. R.
Rios
,
D.
Weiss
,
P. E. A.
Turchi
,
A.
Perron
,
J. R. I.
Lee
,
T. T.
Li
,
J. A.
Hammons
,
M.
Bagge-Hansen
,
T. M.
Willey
,
K.
An
,
Y.
Chen
,
A. H.
King
, and
S. K.
McCall
,
Mater. Horiz.
4
,
1070
(
2017
).
9.
B.
Dutta
,
S. S.
Babu
, and
B.
Jared
,
Science, Technology and Applications of Metals in Additive Manufacturing
(
Elsevier
,
2019
).
10.
Y.
Yang
,
T. Y.
Chen
,
L. Z.
Tan
,
J. D.
Poplawsky
,
K.
An
,
Y. L.
Wang
,
G. D.
Samolyuk
,
K.
Littrell
,
A. R.
Lupini
,
A.
Borisevich
, and
E. P.
George
,
Nature
595
,
245
(
2021
).
11.
F.
Ren
,
R.
Schmidt
,
J. K.
Keum
,
B. S.
Qian
,
E. D.
Case
,
K. C.
Littrell
, and
K.
An
,
Appl. Phys. Lett.
109
,
081903
(
2016
).
12.
O.
Benafan
,
R. D.
Noebe
,
S. A.
Padula
II
,
D. J.
Gaydosh
,
B. A.
Lerch
,
A.
Garg
,
G. S.
Bigelow
,
K.
An
, and
R.
Vaidyanathan
,
Scr. Mater.
68
,
571
(
2013
).
13.
J. L.
Lin
,
K.
An
,
A. D.
Stoica
, and
B. J.
Heuser
,
J. Nucl. Mater.
487
,
396
(
2017
).
14.
K.
Lin
,
W. J.
Li
,
C. Y.
Yu
,
S. H.
Jiang
,
Y. L.
Cao
,
Q.
Li
,
J.
Chen
,
M. H.
Zhang
,
M.
Xia
,
Y.
Chen
,
K.
An
,
X. B.
Li
,
Q. H.
Zhang
,
L.
Gu
, and
X. R.
Xing
,
Acta Mater.
198
,
271
(
2020
).
15.
Y.
Chen
,
D. J.
Yu
, and
K.
An
,
Mater. Res. Lett.
5
,
89
(
2017
).
16.
Q.
Xie
,
Z.
Yan
,
D.
Yu
,
K.
An
,
X.
Yan
,
S.
Yin
,
B.
Gillham
,
X.
Wu
,
P.
Yang
,
Z.
Zhao
, and
Y.
Wang
,
Acta Mater.
226
,
117628
(
2022
).
17.
Y. D.
Wang
,
X. L.
Wang
,
A. D.
Stoica
,
J. W.
Richardson
, and
R. L.
Peng
,
J. Appl. Crystallogr.
36
,
14
(
2003
).
18.
K.
An
,
Y.
Chen
, and
A. D.
Stoica
,
MRS Bull.
44
,
878
(
2019
).
19.
K.
An
,
H. D.
Skorpenske
,
A. D.
Stoica
,
D.
Ma
,
X. L.
Wang
, and
E.
Cakmak
,
Metall. Mater. Trans. A
42
,
95
(
2011
).
20.
Basic Reserach Needs Workshop for Future Nuclear Energy,
DOE, BES
,
2017
.
21.
Basic Research Needs for Transformative Manufacturing-Fundamental Science to Revolutionize Manufacturing,
DOE, BES
,
2020
.
22.
A Remoarkable Return on Investment in Fundamental Research-40 Years of Basic Energy Sciences at the Department of Energy,
DOE, BES
,
2018
.
23.
W.
Wu
,
A. D.
Stoica
,
K. D.
Berry
,
M. J.
Frost
,
H. D.
Skorpenske
, and
K.
An
,
Appl. Phys. Lett.
112
,
253501
(
2018
).
24.
A.
King
,
P.
Reischig
,
J.
Adrien
,
S.
Peetermans
, and
W.
Ludwig
,
Mater. Charact.
97
,
1
(
2014
).
25.
N.
Kardjilov
,
A.
Hilger
,
I.
Manke
,
M.
Strobl
,
M.
Dawson
, and
J.
Banhart
,
Nucl. Instrum. Methods Phys. Res., Sect. A
605
,
13
(
2009
).
26.
L.
Coates
and
L.
Robertson
,
J. Appl. Crystallogr.
50
,
1174
(
2017
).
27.
G. E.
Ice
,
R. I.
Barabash
, and
A.
Khounsary
,
Proc. SPIE
7448
,
74480B
(
2009
).
28.
B.
Khaykovich
,
M. V.
Gubarev
,
Y.
Bagdasarova
,
B. D.
Ramsey
, and
D. E.
Moncton
,
Nucl. Instrum. Methods Phys. Res., Sect. A
631
,
98
(
2011
).
29.
P. K.
Willendrup
,
L.
Udby
,
E.
Knudsen
,
E.
Farhi
, and
K.
Lefmann
,
Nucl. Instrum. Methods Phys. Res., Sect. A
634
,
S150
(
2011
).
30.
P. K.
Willendrup
,
E.
Farhi
,
E.
Knudsen
,
U.
Filges
, and
K.
Lefmann
,
J. Neutron Res.
17
,
35
(
2014
).
31.
S.
Samothrakitis
,
M.
Raventós
,
J.
Čapek
,
C. B.
Larsen
,
C.
Grünzweig
,
M.
Tovar
,
M.
Garcia-Gonzalez
,
J.
Kopeček
,
S.
Schmidt
, and
M.
Strobl
,
Sci. Rep.
10
,
3724
(
2020
).
32.
L. L.
Dessieux
,
A. D.
Stoica
,
P. R.
Bingham
,
K.
An
,
M. J.
Frost
, and
H. Z.
Bilheux
,
Nucl. Instrum. Methods Phys. Res., Sect. B
459
,
166
(
2019
).
33.
L. L.
Dessieux
,
A. D.
Stoica
, and
P. R.
Bingham
,
Rev. Sci. Instrum.
89
,
025103
(
2018
).
34.
J. Y. Y.
Lin
,
H. L.
Smith
,
G. E.
Granroth
,
D. L.
Abernathy
,
M. D.
Lumsden
,
B.
Winn
,
A. A.
Aczel
,
M.
Aivazis
, and
B.
Fultz
,
Nucl. Instrum. Methods Phys. Res., Sect. A
810
,
86
(
2016
).
35.
J. Y. Y.
Lin
,
F.
Islam
,
G.
Sala
,
I.
Lumsded
,
H.
Smith
,
M.
Doucet
,
M. B.
Stone
,
D. L.
Abernathy
,
G.
Ehlers
,
J. F.
Ankner
, and
G. E.
Granroth
,
J. Phys. Commun.
3
,
085005
(
2019
).
You do not currently have access to this content.