We developed a steady-state high-density plasma source by applying a hollow cathode to a cascade arc discharge device. The hollow cathode is made of a thermionic material (LaB6) to facilitate plasma production inside it. The cascade arc discharge device with the hollow cathode produced a stationary plasma with an electron density of about 1016 cm−3. It was found that the plasma source produces a strong pressure gradient between the gas feed and the vacuum chamber. The plasma source separated the atmospheric pressure (100 kPa) and a vacuum (100 Pa) when the discharge was performed with an argon gas flow rate of 5.0 l/min and a discharge current of 40 A. An analysis of the pressure gradient along the plasma source showed that the pressure difference between the gas feed and the vacuum chamber can be well described by the Hagen–Poiseuille flow equation, indicating that the viscosity of the neutral gas is the dominant factor for producing this pressure gradient. A potential profile analysis suggested that the plasma was mainly heated within cylindrical channels whose inner diameter was 3 mm. This feature and the results of the pressure ratio analysis indicated that the temperature, and, thus, viscosity, of the neutral gas increased with the increasing number of intermediate electrodes. The discharge characteristics and shape of the hollow cathode are suitable for plasma window applications.

1.
A. T. M.
Wilbers
,
G. M. W.
Kroesen
,
C. J.
Timmermans
, and
D. C.
Schram
,
Meas. Sci. Technol.
1
,
1326
(
1990
).
2.
S.
Oldenbürger
,
S.
Inagaki
,
T.
Kobayashi
,
H.
Arakawa
,
N.
Ohyama
,
K.
Kawashima
,
Y.
Tobimatsu
,
A.
Fujisawa
,
K.
Itoh
, and
S.-I.
Itoh
,
Plasma Phys. Controlled Fusion
54
,
055002
(
2012
).
3.
G. R.
Tynan
,
C.
Holland
,
J. H.
Yu
,
A.
James
,
D.
Nishijima
,
M.
Shimada
, and
N.
Taheri
,
Plasma Phys. Controlled Fusion
48
,
S51
(
2006
).
4.
S.
Shinohara
,
H.
Nishida
,
T.
Tanikawa
,
T.
Hada
,
I.
Funaki
, and
K. P.
Shamrai
,
IEEE Trans. Plasma Sci.
42
,
1245
(
2014
).
5.
C.
Charles
,
R. W.
Boswell
,
P.
Alexander
,
C.
Costa
,
O.
Sutherland
,
L.
Pfitzner
,
R.
Franzen
,
J.
Kingwell
,
A.
Parfitt
,
P. E.
Frigot
,
J. G.
Del Amo
,
E.
Gengembre
,
G.
Saccoccia
, and
R.
Walker
, in
Collection of Technical Papers - AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference
(
AIAA
,
2006
), Vol. 7, p.
5139
.
6.
K.
Takahashi
,
C.
Charles
,
R.
Boswell
, and
A.
Ando
,
J. Phys. D: Appl. Phys.
46
,
352001
(
2013
).
7.
G. M. W.
Kroesen
,
C. J.
Timmermans
, and
D. C.
Schram
, “
Expanding plasma used for plasma deposition
,”
Pure Appl. Chem.
60
,
795
(
1988
).
8.
N.
Ezumi
,
D.
Nishijima
,
H.
Kojima
,
N.
Ohno
,
S.
Takamura
,
S. I.
Krasheninnikov
, and
A. Y.
Pigarov
,
J. Nucl. Mater.
266
,
337
(
1999
).
9.
W. A. J.
Vijvers
,
C. A. J.
Van Gils
,
W. J.
Goedheer
,
H. J.
Van Der Meiden
,
D. C.
Schram
,
V. P.
Veremiyenko
,
J.
Westerhout
,
N. J.
Lopes Cardozo
, and
G. J.
Van Rooij
,
Phys. Plasmas
15
,
093507
(
2008
).
10.
J.
Rapp
,
W. R.
Koppers
,
H. J. N.
Van Eck
,
G. J.
Van Rooij
,
W. J.
Goedheer
,
B.
De Groot
,
R.
Al
,
M. F.
Graswinckel
,
M. A.
Van Den Berg
,
O.
Kruyt
,
P.
Smeets
,
H. J.
Van Der Meiden
,
W.
Vijvers
,
J.
Scholten
,
M.
Van De Pol
,
S.
Brons
,
W.
Melissen
,
T.
Van Der Grift
,
R.
Koch
,
B.
Schweer
,
U.
Samm
,
V.
Philipps
,
R. A. H.
Engeln
,
D. C.
Schram
,
N. J.
Lopes Cardozo
, and
A. W.
Kleyn
,
Fusion Eng. Des.
85
,
1455
(
2010
).
11.
J.
Rapp
,
Fusion Sci. Technol.
72
,
211
(
2017
).
12.
A.
Hershcovitch
,
Phys. Plasmas
5
,
2130
(
1998
).
13.
A.
Hershcovitch
,
J. Appl. Phys.
78
,
5283
(
1995
).
14.
A.
Hershcovitch
and
A.
Team
,
Phys. Plasmas
12
,
057102
(
2005
).
15.
A.
Hershcovitch
,
Phys. Plasmas
15
,
057101
(
2008
).
16.
B. T.
Pinkoski
,
I.
Zacharia
,
A.
Hershcovitch
,
E. D.
Johnson
, and
D. P.
Siddons
,
Rev. Sci. Instrum.
72
,
1677
(
2001
).
17.
S.
Namba
,
Y.
Iwamoto
,
Y.
Asano
,
T.
Shugyo
,
K.
Fukuyama
,
N.
Ikoma
,
H.
Okuno
,
N.
Tamura
, and
T.
Endo
,
Phys. Plasmas
25
,
113511
(
2018
).
18.
N.
Ikoma
,
Y.
Miyake
,
M.
Takahashi
,
H.
Okuno
,
S.
Namba
,
K.
Takahashi
,
T.
Sasaki
, and
T.
Kikuchi
,
Plasma Fusion Res.
14
,
1206148
(
2019
).
19.
A. L.
Lajoie
, Ph.D. thesis,
Michigan State University
,
2020
.
20.
B. E.
Keen
and
R. V.
Aldridge
,
Phys. Lett. A
29
,
225
(
1969
).
21.
D. A.
Huchital
and
J. D.
Rigden
,
Rev. Sci. Instrum.
39
,
1472
(
1968
).
22.
W. C.
Jennings
,
J. H.
Noon
,
E. H.
Holt
, and
R. G.
Buser
,
Rev. Sci. Instrum.
41
,
322
(
1970
).
23.
D. M.
Goebel
and
E.
Chu
,
J. Propul. Power
30
,
35
(
2014
).
24.
M. A. M.
Silva
,
A. E.
Martinelli
,
C.
Alves
,
R. M.
Nascimento
,
M. P.
Távora
, and
C. D.
Vilar
,
Surf. Coat. Technol.
200
,
2618
(
2006
).
25.
J.-L.
Delcroix
and
A. R.
Trindade
,
Adv. Electron. Electron Phys.
35
,
87
(
1974
).
26.
P. M.
Bellan
,
Fundamentals of Plasma Physics
(
Cambridge University Press
,
Cambridge
,
2006
).
28.
W. A. J.
Vijvers
,
D. C.
Schram
,
A. E.
Shumack
,
N. J.
Lopes Cardozo
,
J.
Rapp
, and
G. J.
Van Rooij
,
Plasma Sources Sci. Technol.
19
,
065016
(
2010
).
29.
H. J. N.
van Eck
,
G. R. A.
Akkermans
,
S.
Alonso van der Westen
,
D. U. B.
Aussems
,
M.
van Berkel
,
S.
Brons
,
I. G. J.
Classen
,
H. J.
van der Meiden
,
T. W.
Morgan
,
M. J.
van de Pol
,
J.
Scholten
,
J. W. M.
Vernimmen
,
E. G. P.
Vos
, and
M. R.
de Baar
,
Fusion Eng. Des.
142
,
26
(
2019
).
30.
L. D.
Landau
and
E. M.
Lifshitz
, in
Fluid Mechanics (Second Edition)
, 2nd ed., edited by
L. D.
Landau
and
E. M.
Lifshitz
(
Pergamon
,
1987
), pp.
44
94
.
31.
V.
Rat
,
P.
André
,
J.
Aubreton
,
M. F.
Elchinger
,
P.
Fauchais
, and
A.
Lefort
,
Plasma Chem. Plasma Process.
22
,
453
(
2002
).
You do not currently have access to this content.