Wearable thermoelectric generators can harvest heat from the human body to power an intelligent electronic device, which plays an important role in wearable electronics. However, due to the complexity of human skin, there is still no unified standard for performance testing of wearable thermoelectric generators under wearable conditions. Herein, a test platform suitable for a wearable thermoelectric generator was designed and built by simulating the structure of the arm. Based on the biological body temperature regulation function, water flow and water temperature substitute blood flow and blood temperature, the silicone gel with some thickness simulates the skin layer of the human arm, thus achieving the goal of adjusting the thermal resistance of human skin. Meanwhile, the weight is used as the contact pressure to further ensure the reliability and accuracy of the test data. In addition, the environment regulatory system is set up to simulate the outdoor day. Actually, the maximum deviation of the performance of the thermoelectric generator worn on the test platform and human arm is ∼5.2%, indicating the accuracy of objective evaluation.

1.
Q.
Shi
,
B.
Dong
,
T.
He
,
Z.
Sun
,
J.
Zhu
,
Z.
Zhang
, and
C.
Lee
, “
Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things
,”
InfoMat
2
,
1131
1162
(
2020
).
2.
H. R.
Lim
,
H. S.
Kim
,
R.
Qazi
,
Y. T.
Kwon
,
J. W.
Jeong
, and
W. H.
Yeo
, “
Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment
,”
Adv. Mater.
32
,
1901924
(
2020
).
3.
J.
Lee
,
B.
Llerena Zambrano
,
J.
Woo
,
K.
Yoon
, and
T.
Lee
, “
Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications
,”
Adv. Mater.
32
,
1902532
(
2020
).
4.
Y.
Yang
and
W.
Gao
, “
Wearable and flexible electronics for continuous molecular monitoring
,”
Chem. Soc. Rev.
48
,
1465
1491
(
2019
).
5.
K.
Xu
,
Y.
Lu
, and
K.
Takei
, “
Multifunctional skin-inspired flexible sensor systems for wearable electronics
,”
Adv. Mater. Technol.
4
,
1800628
(
2019
).
6.
X.
Wang
,
Z.
Liu
, and
T.
Zhang
, “
Flexible sensing electronics for wearable/attachable health monitoring
,”
Small
13
,
1602790
(
2017
).
7.
H.
Wu
,
Y.
Huang
,
F.
Xu
,
Y.
Duan
, and
Z.
Yin
, “
Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability
,”
Adv. Mater.
28
,
9881
9919
(
2016
).
8.
Kenry
,
J. C.
Yeo
, and
C. T.
Lim
, “
Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications
,”
Microsyst. Nanoeng.
2
,
16043
(
2016
).
9.
X.
Tang
,
Z.
Li
,
W.
Liu
,
Q.
Zhang
, and
C.
Uher
, “
A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond
,”
Interdiscip. Mater.
1
,
88
115
(
2022
).
10.
D.-L.
Wen
,
X.
Liu
,
J.-F.
Bao
,
G.-K.
Li
,
T.
Feng
,
F.
Zhang
,
D.
Liu
, and
X.-S.
Zhang
, “
Flexible hybrid photo-thermoelectric generator based on single thermoelectric effect for simultaneously harvesting thermal and radiation energies
,”
ACS Appl. Mater. Interfaces
13
,
21401
21410
(
2021
).
11.
V.
Padmanabhan Ramesh
,
Y.
Sargolzaeiaval
,
T.
Neumann
,
V.
Misra
,
D.
Vashaee
,
M. D.
Dickey
, and
M. C.
Ozturk
, “
Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler
,”
npj Flexible Electron.
5
,
5
(
2021
).
12.
C.
Gu
,
L.
Bai
,
L.
Pu
,
P.
Gai
, and
F.
Li
, “
Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers
,”
Biosens. Bioelectron.
176
,
112907
(
2021
).
13.
D.
Jiang
,
B.
Shi
,
H.
Ouyang
,
Y.
Fan
,
Z. L.
Wang
, and
Z.
Li
, “
Emerging implantable energy harvesters and self-powered implantable medical electronics
,”
ACS Nano
14
,
6436
6448
(
2020
).
14.
L.
Huang
,
S.
Lin
,
Z.
Xu
,
H.
Zhou
,
J.
Duan
,
B.
Hu
, and
J.
Zhou
, “
Fiber-based energy conversion devices for human-body energy harvesting
,”
Adv. Mater.
32
,
1902034
(
2020
).
15.
H.
Chen
,
Y.
Song
,
X.
Cheng
, and
H.
Zhang
, “
Self-powered electronic skin based on the triboelectric generator
,”
Nano Energy
56
,
252
268
(
2019
).
16.
R.
Liu
,
X.
Kuang
,
J.
Deng
,
Y.-C.
Wang
,
A. C.
Wang
,
W.
Ding
,
Y.-C.
Lai
,
J.
Chen
,
P.
Wang
,
Z.
Lin
,
H. J.
Qi
,
B.
Sun
, and
Z. L.
Wang
, “
Shape memory polymers for body motion energy harvesting and self-powered mechanosensing
,”
Adv. Mater.
30
,
1705195
(
2018
).
17.
S.
Wang
,
L.
Lin
, and
Z. L.
Wang
, “
Triboelectric nanogenerators as self-powered active sensors
,”
Nano Energy
11
,
436
462
(
2015
).
18.
L.
Yin
,
J.-M.
Moon
,
J. R.
Sempionatto
,
M.
Lin
,
M.
Cao
,
A.
Trifonov
,
F.
Zhang
,
Z.
Lou
,
J.-M.
Jeong
,
S.-J.
Lee
,
S.
Xu
, and
J.
Wang
, “
A passive perspiration biofuel cell: High energy return on investment
,”
Joule
5
,
1888
1904
(
2021
).
19.
J.
Cao
and
F.
Yan
, “
Recent progress in tin-based perovskite solar cells
,”
Energy Environ. Sci.
14
,
1286
1325
(
2021
).
20.
R.
Wang
,
M.
Mujahid
,
Y.
Duan
,
Z. K.
Wang
,
J.
Xue
, and
Y.
Yang
, “
A review of perovskites solar cell stability
,”
Adv. Funct. Mater.
29
,
1808843
(
2019
).
21.
Y.
Zhong
,
J.
Wang
,
T.
Zheng
,
Y.
Fautrelle
, and
Z.
Ren
, “
Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification
,”
Mater. Today: Proc.
2
,
S364
S372
(
2015
).
22.
J.
Qiu
,
Y.
Yan
,
T.
Luo
,
K.
Tang
,
L.
Yao
,
J.
Zhang
,
M.
Zhang
,
X.
Su
,
G.
Tan
,
H.
Xie
,
M. G.
Kanatzidis
,
C.
Uher
, and
X.
Tang
, “
3D printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance
,”
Energy Environ. Sci.
12
,
3106
3117
(
2019
).
23.
K.
Kanahashi
,
J.
Pu
, and
T.
Takenobu
, “
2D materials for large‐area flexible thermoelectric devices
,”
Adv. Energy Mater.
10
,
1902842
(
2019
).
24.
R.
He
,
G.
Schierning
, and
K.
Nielsch
, “
Thermoelectric devices: A review of devices, architectures, and contact optimization
,”
Adv. Mater. Technol.
3
,
1700256
(
2018
).
25.
X.
Su
,
P.
Wei
,
H.
Li
,
W.
Liu
,
Y.
Yan
,
P.
Li
,
C.
Su
,
C.
Xie
,
W.
Zhao
,
P.
Zhai
,
Q.
Zhang
,
X.
Tang
, and
C.
Uher
, “
Multi-scale microstructural thermoelectric materials: Transport behavior, non-equilibrium preparation, and applications
,”
Adv. Mater.
29
,
1602013
(
2017
).
26.
X.
Su
,
F.
Fu
,
Y.
Yan
,
G.
Zheng
,
T.
Liang
,
Q.
Zhang
,
X.
Cheng
,
D.
Yang
,
H.
Chi
,
X.
Tang
,
Q.
Zhang
, and
C.
Uher
, “
Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing
,”
Nat. Commun.
5
,
4908
(
2014
).
27.
G.
Tan
,
L.-D.
Zhao
, and
M. G.
Kanatzidis
, “
Rationally designing high-performance bulk thermoelectric materials
,”
Chem. Rev.
116
,
12123
12149
(
2016
).
28.
Y.
Sargolzaeiaval
,
V.
Padmanabhan Ramesh
,
T. V.
Neumann
,
V.
Misra
,
D.
Vashaee
,
M. D.
Dickey
, and
M. C.
Öztürk
, “
Flexible thermoelectric generators for body heat harvesting—Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects
,”
Appl. Energy
262
,
114370
(
2020
).
29.
A.
Nozariasbmarz
,
H.
Collins
,
K.
Dsouza
,
M. H.
Polash
,
M.
Hosseini
,
M.
Hyland
,
J.
Liu
,
A.
Malhotra
,
F. M.
Ortiz
,
F.
Mohaddes
,
V. P.
Ramesh
,
Y.
Sargolzaeiaval
,
N.
Snouwaert
,
M. C.
Özturk
, and
D.
Vashaee
, “
Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems
,”
Appl. Energy
258
,
114069
(
2020
).
30.
Y.
Lu
,
Y.
Qiu
,
K.
Cai
,
Y.
Ding
,
M.
Wang
,
C.
Jiang
,
Q.
Yao
,
C.
Huang
,
L.
Chen
, and
J.
He
, “
Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices
,”
Energy Environ. Sci.
13
,
1240
1249
(
2020
).
31.
H.
Park
,
Y.
Eom
,
D.
Lee
,
J.
Kim
,
H.
Kim
,
G.
Park
, and
W.
Kim
, “
High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials
,”
Energy
187
,
115935
(
2019
).
32.
Y.
Du
,
J.
Xu
,
B.
Paul
, and
P.
Eklund
, “
Flexible thermoelectric materials and devices
,”
Appl. Mater. Today
12
,
366
388
(
2018
).
33.
S. J.
Kim
,
J. H.
We
, and
B. J.
Cho
, “
A wearable thermoelectric generator fabricated on a glass fabric
,”
Energy Environ. Sci.
7
,
1959
1965
(
2014
).
34.
D.
Wijethunge
,
D.
Kim
, and
W.
Kim
, “
Simplified human thermoregulatory model for designing wearable thermoelectric devices
,”
J. Phys. D: Appl. Phys.
51
,
055401
(
2018
).
35.
Y.
Yao
,
Z.
Lian
,
W.
Liu
, and
Q.
Shen
, “
Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments
,”
Indoor Built Environ.
16
,
505
518
(
2016
).
36.
V.
Leonov
, “
Human machine and thermoelectric energy scavenging for wearable devices
,”
ISRN Renewable Energy
2011
,
785380
.
37.
Y. J.
Kim
,
H. M.
Gu
,
C. S.
Kim
,
H.
Choi
,
G.
Lee
,
S.
Kim
,
K. K.
Yi
,
S. G.
Lee
, and
B. J.
Cho
, “
High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator
,”
Energy
162
,
526
533
(
2018
).
38.
Y.
Wang
,
Y.
Shi
,
D.
Mei
, and
Z.
Chen
, “
Wearable thermoelectric generator for harvesting heat on the curved human wrist
,”
Appl. Energy
205
,
710
719
(
2017
).
39.
Y.
Eom
,
D.
Wijethunge
,
H.
Park
,
S. H.
Park
, and
W.
Kim
, “
Flexible thermoelectric power generation system based on rigid inorganic bulk materials
,”
Appl. Energy
206
,
649
656
(
2017
).
40.
H.
You
,
Z.
Li
,
Y.
Shao
,
X.
Yuan
,
W.
Liu
,
H.
Tang
,
Q.
Zhang
,
Y.
Yan
, and
X.
Tang
, “
Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density
,”
Appl. Therm. Eng.
202
,
117818
(
2022
).

Supplementary Material

You do not currently have access to this content.