Helical propulsion is used by many micro-organisms to swim in viscous-dominated environments. Their swimming dynamics are relatively well understood, but a detailed study of the flow fields is still needed to understand wall effects and hydrodynamic interactions among swimmers. In this letter, we describe the development of an autonomous swimming robot with a helical tail that operates in the Stokes regime. The device uses a battery-based power system with a miniature motor that imposes a rotational speed on a helical tail. The speed, direction, and activation are controlled electronically using an infrared remote control. Since the robot is about 5 cm long, we use highly viscous fluids to match the Reynolds number, Re, to be less than 0.1. Measurements of swimming speeds are conducted for a range of helical wavelengths, λ, head geometries, and rotation rates, ω. We provide comparisons of the experimental measurements with analytical predictions derived from resistive force theory. This force and torque-free neutrally buoyant swimmer mimics the swimming strategy of bacteria more closely than previously used designs and offers a lot of potential for future applications.

1.
J. P.
Ramsay
,
N. R.
Williamson
,
D. R.
Spring
, and
G. P. C.
Salmond
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
14932
(
2011
).
2.
K. W.
Foster
,
J.
Saranak
,
N.
Patel
,
G.
Zarilli
,
M.
Okabe
,
T.
Kline
, and
K.
Nakanishi
,
Nature
311
,
756
(
1984
).
4.
E.
Lauga
and
T. R.
Powers
,
Rep. Prog. Phys.
72
,
096601
(
2009
).
5.
G. J.
Hancock
,
Proc. R. Soc. London, Ser. A
217
,
96
(
1953
).
6.
E. M.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
7.
J.
Gray
and
G. J.
Hancock
,
J. Exp. Biol.
32
,
802
(
1955
).
8.
J.
Espinosa-Garcia
,
E.
Lauga
, and
R.
Zenit
,
Phys. Fluids
25
,
031701
(
2013
).
9.
S.
Gómez
,
F. A.
Godínez
,
E.
Lauga
, and
R.
Zenit
,
J. Fluid Mech.
812
,
R3
(
2017
).
10.
V.
Angeles
,
F. A.
Godínez
,
J. A.
Puente-Velazquez
,
R.
Mendez-Rojano
,
E.
Lauga
, and
R.
Zenit
,
Phys. Rev. Fluids
6
,
043102
(
2021
).
11.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H.
Zhang
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
E338
(
2013
).
12.
A. T.
Chwang
and
T. Y.
Wu
,
Proc. R. Soc. London, Ser. B
178
,
327
(
1971
).
13.
J.
Lighthill
,
SIAM Rev.
18
,
161
(
1976
).
14.
T.
Maxworthy
,
J. Fluid Mech.
23
,
369
(
1965
).
15.
B.
Huner
and
R. G.
Hussey
,
Phys. Fluids
20
,
1211
(
1977
).
16.
M. J.
Kim
,
M. J.
Kim
,
J. C.
Bird
,
J.
Park
,
T. R.
Powers
, and
K. S.
Breuer
,
Exp. Fluids
37
,
782
(
2004
).
17.
Z.
Qu
,
F. Z.
Temel
,
R.
Henderikx
, and
K. S.
Breuer
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
1707
(
2018
).
18.
M.
Tournus
,
A.
Kirshtein
,
L. V.
Berlyand
, and
I. S.
Aranson
,
J. R. Soc. Interface
12
,
20140904
(
2015
).
19.
Y.
Chen
, and
N.
Lordi
, and
M.
Taylor
, and
O. S.
Pak
,
Phys. Rev. E
102
,
043111
(
2020
).
20.
L. A.
Kroo
,
J. P.
Binagia
,
N.
Eckman
,
M.
Prakash
, and
E. S. G.
Shaqfeh
, arXiv:2111.10515 [physics.flu-dyn] (
2021
).

Supplementary Material

You do not currently have access to this content.