We report the design and performance of a cryogen-free, pulse-tube refrigerator (PTR)-based scanning probe microscopy (SPM) system capable of operating at a base temperature of near 5 K. We achieve this by combining a home-made interface design between the PTR cold head and the SPM head, with an automatic gas-handling system. The interface design isolates the PTR vibrations by a combination of polytetrafluoroethylene and stainless-steel bellows and by placing the SPM head on a passive vibration isolation table via two cold stages that are connected to thermal radiation shields using copper heat links. The gas-handling system regulates the helium heat-exchange gas pressures, facilitating both the cooldown to and maintenance of the base temperature. We discuss the effects of each component using measured vibration, current-noise, temperature, and pressure data. We demonstrate that our SPM system performance is comparable to known liquid-helium-based systems with the measurements of the superconducting gap spectrum of Pb, atomic-resolution scanning tunneling microscopy image and quasiparticle interference pattern of Au(111) surface, and non-contact atomic force microscopy image of NaCl(100) surface. Without the need for cryogen refills, the present SPM system enables uninterrupted low-temperature measurements.

1.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy: Methods and Applications
(
Cambridge University Press
,
1994
).
2.
S.
Morita
,
R.
Wiesendanger
, and
E.
Meyer
,
Noncontact Atomic Force Microscopy
(
Springer
,
2002
).
3.
W. J.
Nuttall
,
R. H.
Clarke
, and
B. A.
Glowacki
,
Nature
485
,
573
(
2012
).
4.
H.
Okamoto
and
D.
Chen
,
Rev. Sci. Instrum.
72
,
1510
(
2001
).
5.
V. N.
Trofimov
,
A. N.
Chernikov
,
S. V.
Zaitsev-Zotov
,
I. N.
Dyuzhikov
,
V. M.
Shevlyuga
, and
K. N.
Eltsov
,
Instrum. Exp. Tech.
50
,
838
(
2007
).
6.
USM1200, UNISOKU Co., Ltd., Japan.
7.
A. M. J.
den Haan
,
G. H. C. J.
Wijts
,
F.
Galli
,
O.
Usenko
,
G. J. C.
van Baarle
,
D. J.
van der Zalm
, and
T. H.
Oosterkamp
,
Rev. Sci. Instrum.
85
,
035112
(
2014
).
8.
J. D.
Hackley
,
D. A.
Kislitsyn
,
D. K.
Beaman
,
S.
Ulrich
, and
G. V.
Nazin
,
Rev. Sci. Instrum.
85
,
103704
(
2014
).
9.
S.
Zhang
,
D.
Huang
, and
S.
Wu
,
Rev. Sci. Instrum.
87
,
063701
(
2016
).
10.
L.
Pabbi
,
A. R.
Binion
,
R.
Banerjee
,
B.
Dusch
,
C. B.
Shoop
, and
E. W.
Hudson
,
Rev. Sci. Instrum.
89
,
063703
(
2018
).
11.
W.
Meng
,
J.
Wang
,
Y.
Hou
,
M.
Sui
,
H.
Zhou
,
J.
Wang
,
G.
Wu
,
J.
Zhang
,
F.
Chen
,
X.
Luo
,
Y.
Sun
,
J.
Li
, and
Q.
Lu
,
Ultramicroscopy
205
,
20
(
2019
).
12.
S.
Chaudhary
,
J. J.
Panda
,
S.
Mundlia
,
S.
Mathimalar
,
A.
Ahmedof
, and
K. V.
Raman
,
Rev. Sci. Instrum.
92
,
023906
(
2021
).
13.
INFINITY SPM Lab, Scienta Omicron GmbH, Germany.
14.
PanScan Freedom, RHK Technology, Inc. USA.
15.
Y.
Ikushima
,
R.
Li
,
T.
Tomaru
,
N.
Sato
,
T.
Suzuki
,
T.
Haruyama
,
T.
Shintomi
, and
A.
Yamamoto
,
Cryogenics
48
,
406
(
2008
).
16.
M.
Takeno
,
S.
Nishijima
,
T.
Okada
,
K.
Fujioka
, and
Y.
Kuraoka
,
Teion Kogaku
21
,
182
(
1986
).
17.
E.
Mykkänen
,
J. S.
Lehtinen
,
A.
Kemppinen
,
C.
Krause
,
D.
Drung
,
J.
Nissilä
, and
A. J.
Manninen
,
Rev. Sci. Instrum.
87
,
105111
(
2016
).
18.
F. J.
Giessibl
,
Appl. Phys. Lett.
76
,
1470
(
2000
).
19.
A.
Bettac
,
J.
Koeble
,
K.
Winkler
,
B.
Uder
,
M.
Maier
, and
A.
Feltz
,
Nanotechnology
20
,
264009
(
2009
).
20.
L.
Petersen
,
P.
Laitenberger
,
E.
Lægsgaard
, and
F.
Besenbacher
,
Phys. Rev. B
58
,
7361
(
1998
).
21.
M.
Hoesch
,
M.
Muntwiler
,
V. N.
Petrov
,
M.
Hengsberger
,
L.
Patthey
,
M.
Shi
,
M.
Falub
,
T.
Greber
, and
J.
Osterwalder
,
Phys. Rev. B
69
(
R
),
241401
(
2004
).
22.
J.
Tesch
,
P.
Leicht
,
F.
Blumenschein
,
L.
Gragnaniello
,
M.
Fonin
,
L. E.
Marsoner Steinkasserer
,
B.
Paulus
,
E.
Voloshina
, and
Y.
Dedkov
,
Sci. Rep.
6
,
23439
(
2016
).
23.
R. C.
Dynes
,
V.
Narayanamurti
, and
J. P.
Garno
,
Phys. Rev. Lett.
41
,
1509
(
1978
).
You do not currently have access to this content.