We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary techniques. Considering the Étendue conservation and using an off-axis parabolic mirror, it is possible to design a light collection and injection system that displays 72% of collection efficiency (considering the hemisphere above the sample surface) while maintaining high spectral resolution and minimizing signal loss. The performance of the STM is tested by atomically resolved images and scanning tunneling spectroscopy results on standard sample surfaces. The capabilities of our system are demonstrated by performing STM-LE on metallic surfaces and two-dimensional semiconducting samples, observing both plasmonic and excitonic emissions. In addition, we carried out in situ PL measurements on semiconducting monolayers and quantum dots and in situ Raman on graphite and hexagonal boron nitride (h-BN) samples. Additionally, STM-CL and PL were obtained on monolayer h-BN gathering luminescence spectra that are typically associated with intragap states related to carbon defects. The results show that the flexible and efficient light injection and collection device based on an off-axis parabolic mirror is a powerful tool to study several types of nanostructures with multiple spectroscopic techniques in correlation with their morphology at the atomic scale and electronic structure.

1.
D. F.
Ogletree
,
P. J.
Schuck
,
A. F.
Weber-Bargioni
,
N. J.
Borys
,
S.
Aloni
,
W.
Bao
,
S.
Barja
,
J.
Lee
,
M.
Melli
,
K.
Munechika
,
S.
Whitelam
, and
S.
Wickenburg
, “
Revealing optical properties of reduced-dimensionality materials at relevant length scales
,”
Adv. Mater.
27
,
5693
5719
(
2015
).
2.
G.
Jacopin
,
A. D. L.
Bugallo
,
P.
Lavenus
,
L.
Rigutti
,
F. H.
Julien
,
L. F.
Zagonel
,
M.
Kociak
,
C.
Durand
,
D.
Salomon
,
X. J.
Chen
,
J.
Eymery
, and
M.
Tchernycheva
, “
Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells
,”
Appl. Phys. Express
5
,
014101
(
2011
).
3.
S.
Rühle
,
M.
Shalom
, and
A.
Zaban
, “
Quantum-dot-sensitized solar cells
,”
ChemPhysChem
11
,
2290
2304
(
2010
).
4.
R.
Agarwal
, “
Heterointerfaces in semiconductor nanowires
,”
Small
4
,
1872
1893
(
2008
).
5.
Y.
Zhang
,
J.
Wu
,
M.
Aagesen
, and
H.
Liu
, “
III–V nanowires and nanowire optoelectronic devices
,”
J. Phys. D: Appl. Phys.
48
,
463001
(
2015
).
6.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
7.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
, “
Graphene-like two-dimensional materials
,”
Chem. Rev.
113
,
3766
3798
(
2013
).
8.
W.
Zheng
,
Y.
Jiang
,
X.
Hu
,
H.
Li
,
Z.
Zeng
,
X.
Wang
, and
A.
Pan
, “
Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications
,”
Adv. Opt. Mater.
6
,
1800420
(
2018
).
9.
M.
Samadi
,
N.
Sarikhani
,
M.
Zirak
,
H.
Zhang
,
H.-L.
Zhang
, and
A. Z.
Moshfegh
, “
Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives
,”
Nanoscale Horiz.
3
,
90
204
(
2018
).
10.
P.
Tonndorf
,
R.
Schmidt
,
R.
Schneider
,
J.
Kern
,
M.
Buscema
,
G. A.
Steele
,
A.
Castellanos-Gomez
,
H. S. J.
van der Zant
,
S. M.
de Vasconcellos
, and
R.
Bratschitsch
, “
Single-photon emission from localized excitons in an atomically thin semiconductor
,”
Optica
2
,
347
352
(
2015
).
11.
X.
Wei
,
Z.
Yu
,
F.
Hu
,
Y.
Cheng
,
L.
Yu
,
X.
Wang
,
M.
Xiao
,
J.
Wang
,
X.
Wang
, and
Y.
Shi
, “
Mo–O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS2
,”
AIP Adv.
4
,
123004
(
2014
).
12.
S.
Tongay
,
J.
Suh
,
C.
Ataca
,
W.
Fan
,
A.
Luce
,
J. S.
Kang
,
J.
Liu
,
C.
Ko
,
R.
Raghunathanan
,
J.
Zhou
,
F.
Ogletree
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
, “
Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons
,”
Sci. Rep.
3
,
2657
(
2013
).
13.
Z.
Wu
,
W.
Zhao
,
J.
Jiang
,
T.
Zheng
,
Y.
You
,
J.
Lu
, and
Z.
Ni
, “
Defect activated photoluminescence in WSe2 monolayer
,”
J. Phys. Chem. C
121
,
12294
12299
(
2017
).
14.
A.
Gustafsson
,
M.-E.
Pistol
,
L.
Montelius
, and
L.
Samuelson
, “
Local probe techniques for luminescence studies of low-dimensional semiconductor structures
,”
J. Appl. Phys.
84
,
1715
1775
(
1998
).
15.
M.
Kociak
,
O.
Stéphan
,
A.
Gloter
,
L. F.
Zagonel
,
L. H. G.
Tizei
,
M.
Tencé
,
K.
March
,
J. D.
Blazit
,
Z.
Mahfoud
,
A.
Losquin
,
S.
Meuret
, and
C.
Colliex
, “
Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics
,”
C. R. Phys.
15
,
158
175
(
2014
); Seeing and measuring with electrons: Transmission Electron Microscopy today and tomorrow.
16.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy: Methods and Applications
(
Cambridge University Press
,
1994
).
17.
R.
Plumadore
,
M.
Baskurt
,
J.
Boddison-Chouinard
,
G.
Lopinski
,
M.
Modarresi
,
P.
Potasz
,
P.
Hawrylak
,
H.
Sahin
,
F. M.
Peeters
, and
A.
Luican-Mayer
, “
Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide
,”
Phys. Rev. B
102
,
205408
(
2020
).
18.
M.
Kociak
and
L. F.
Zagonel
, “
Cathodoluminescence in the scanning transmission electron microscope
,”
Ultramicroscopy
176
,
112
131
(
2017
); 70th Birthday of Robert Sinclair and 65th Birthday of Nestor J. Zaluzec PICO 2017—Fourth Conference on Frontiers of Aberration Corrected Electron Microscopy.
19.
K.
Kuhnke
,
C.
Große
,
P.
Merino
, and
K.
Kern
, “
Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces
,”
Chem. Rev.
117
,
5174
5222
(
2017
).
20.
T.
Coenen
and
N. M.
Haegel
, “
Cathodoluminescence for the 21st century learning more from light
,”
Appl. Phys. Rev.
4
,
031103
(
2017
).
21.
F.
Stavale
,
N.
Nilius
, and
H.-J.
Freund
, “
STM luminescence spectroscopy of intrinsic defects in ZnO(0001) thin films
,”
J. Phys. Chem. Lett.
4
,
3972
3976
(
2013
).
22.
F.
Stavale
,
L.
Pascua
,
N.
Nilius
, and
H.-J.
Freund
, “
Luminescence properties of nitrogen-doped ZnO
,”
J. Phys. Chem. C
118
,
13693
13696
(
2014
).
23.
E.
Le Moal
,
S.
Marguet
,
B.
Rogez
,
S.
Mukherjee
,
P.
Dos Santos
,
E.
Boer-Duchemin
,
G.
Comtet
, and
G.
Dujardin
, “
An electrically excited nanoscale light source with active angular control of the emitted light
,”
Nano Lett.
13
,
4198
4205
(
2013
).
24.
T.
Lutz
,
A.
Kabakchiev
,
T.
Dufaux
,
C.
Wolpert
,
Z.
Wang
,
M.
Burghard
,
K.
Kuhnke
, and
K.
Kern
, “
Scanning tunneling luminescence of individual CdSe nanowires
,”
Small
7
,
2396
2400
(
2011
).
25.
C.
Chen
,
P.
Chu
,
C. A.
Bobisch
,
D. L.
Mills
, and
W.
Ho
, “
Viewing the interior of a single molecule: Vibronically resolved photon imaging at submolecular resolution
,”
Phys. Rev. Lett.
105
,
217402
(
2010
).
26.
X. H.
Qiu
,
G. V.
Nazin
, and
W.
Ho
, “
Vibrationally resolved fluorescence excited with submolecular precision
,”
Science
299
,
542
546
(
2003
).
27.
D.
Pommier
,
R.
Bretel
,
L. E. P.
López
,
F.
Fabre
,
A.
Mayne
,
E.
Boer-Duchemin
,
G.
Dujardin
,
G.
Schull
,
S.
Berciaud
, and
E.
Le Moal
, “
Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor
,”
Phys. Rev. Lett.
123
,
027402
(
2019
).
28.
R.
Péchou
,
S.
Jia
,
J.
Rigor
,
O.
Guillermet
,
G.
Seine
,
J.
Lou
,
N.
Large
,
A.
Mlayah
, and
R.
Coratger
, “
Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope
,”
ACS Photonics
7
,
3061
(
2020
).
29.
R. J.
Peña Román
,
Y.
Auad
,
L.
Grasso
,
F.
Alvarez
,
I. D.
Barcelos
, and
L. F.
Zagonel
, “
Tunneling-current-induced local excitonic luminescence in p-doped WSe2 monolayers
,”
Nanoscale
12
,
13460
13470
(
2020
).
30.
G. M.
do Amaral
,
I.
da Costa Tonon
,
R. J.
Peña Román
,
H.
de Oliveira Plath
,
T. M.
Taniguchi
,
L. H.
de Lima
,
L. F.
Zagonel
,
R.
Landers
, and
A.
de Siervo
, “
Epitaxial growth, electronic hybridization and stability under oxidation of monolayer MoS2 on Ag(111)
,”
Appl. Surf. Sci.
538
,
148138
(
2021
).
31.
M.
Sakurai
,
C.
Thirstrup
, and
M.
Aono
, “
New aspects of light emission from STM
,”
Appl. Phys. A
80
,
1153
(
2005
).
32.
L. F.
Zagonel
,
L. H. G.
Tizei
,
G. Z.
Vitiello
,
G.
Jacopin
,
L.
Rigutti
,
M.
Tchernycheva
,
F. H.
Julien
,
R.
Songmuang
,
T.
Ostasevicius
,
F.
de la Peña
,
C.
Ducati
,
P. A.
Midgley
, and
M.
Kociak
, “
Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires
,”
Phys. Rev. B
93
,
205410
(
2016
).
33.
R.
Berndt
,
R. R.
Schlittler
, and
J. K.
Gimzewski
, “
Photon emission scanning tunneling microscope
,”
J. Vac. Sci. Technol. B
9
,
573
577
(
1991
).
34.
K.
Edelmann
,
L.
Gerhard
,
M.
Winkler
,
L.
Wilmes
,
V.
Rai
,
M.
Schumann
,
C.
Kern
,
M.
Meyer
,
M.
Wegener
, and
W.
Wulfhekel
, “
Light collection from a low-temperature scanning tunneling microscope using integrated mirror tips fabricated by direct laser writing
,”
Rev. Sci. Instrum.
89
,
123107
(
2018
).
35.
J. G.
Keizer
,
J. K.
Garleff
, and
P. M.
Koenraad
, “
Simple and efficient scanning tunneling luminescence detection at low-temperature
,”
Rev. Sci. Instrum.
80
,
123704
(
2009
).
36.
K.
Kuhnke
,
A.
Kabakchiev
,
W.
Stiepany
,
F.
Zinser
,
R.
Vogelgesang
, and
K.
Kern
, “
Versatile optical access to the tunnel gap in a low-temperature scanning tunneling microscope
,”
Rev. Sci. Instrum.
81
,
113102
(
2010
).
37.
G.
Hoffmann
,
J.
Kröger
, and
R.
Berndt
, “
Color imaging with a low temperature scanning tunneling microscope
,”
Rev. Sci. Instrum.
73
,
305
309
(
2002
).
38.
L. G.
Chen
,
C.
Zhang
,
R.
Zhang
,
X. L.
Zhang
, and
Z. C.
Dong
, “
Note: Optical optimization for ultrasensitive photon mapping with submolecular resolution by scanning tunneling microscope induced luminescence
,”
Rev. Sci. Instrum.
84
,
066106
(
2013
).
39.
H.-J.
Freund
,
N.
Nilius
,
T.
Risse
,
S.
Schauermann
, and
T.
Schmidt
, “
Innovative measurement techniques in surface science
,”
ChemPhysChem
12
,
79
87
(
2011
).
40.
Y.
Khang
,
Y.
Park
,
M.
Salmeron
, and
E. R.
Weber
, “
Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements
,”
Rev. Sci. Instrum.
70
,
4595
4599
(
1999
).
41.
Y.
Suzuki
,
H.
Minoda
, and
N.
Yamamoto
, “
STM light emission from Ag/Si(111)
,”
Surf. Sci.
438
,
297
304
(
1999
).
42.
N. J.
Watkins
,
J. P.
Long
,
Z. H.
Kafafi
, and
A. J.
Mäkinen
, “
Fiber optic light collection system for scanning-tunneling-microscope-induced light emission
,”
Rev. Sci. Instrum.
78
,
053707
(
2007
).
43.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
, 2nd ed. (
Oxford University Press
,
2008
).
44.
B.
Voigtländer
,
Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy. NanoScience and Technology
(
Springer
,
Berlin, Heidelberg
,
2015
).
45.
F.
Rossel
,
M.
Pivetta
, and
W.-D.
Schneider
, “
Luminescence experiments on supported molecules with the scanning tunneling microscope
,”
Surf. Sci. Rep.
65
,
129
144
(
2010
).
46.
M.
Bass
,
E. W. V.
Stryland
,
D. R.
Williams
, and
W. L.
Wolfe
,
Handbook of Optics, Volume II: Devices, Measurements, and Properties
, 2nd ed. (
McGraw-Hill
,
1995
).
47.
M.
Bass
,
E. W. V.
Stryland
,
D. R.
Williams
, and
W. L.
Wolfe
,
Handbook of Optics, Volume III: Classical Optics, Vision Optics, X-Ray Optics
, 2nd ed. (
McGraw-Hill
,
2001
).
48.
M.
Bass
,
E. W. V.
Stryland
,
D. R.
Williams
, and
W. L.
Wolfe
,
Handbook of Optics, Volume I: Fundamentals, Techniques, and Design
, 2nd ed. (
McGraw-Hill
,
1995
).
49.
P. R.
Edwards
and
R. W.
Martin
, “
Cathodoluminescence nano-characterization of semiconductors
,”
Semicond. Sci. Technol.
26
,
064005
(
2011
).
50.
M.
Kociak
,
L. F.
Zagonel
,
M.
Tence
, and
S.
Mazzuco
, “
Flexible cathodoluminescence detection system and microscope employing such as system
,” patent WO/2011/148072 (
2011
).
51.
J. J.
Sáenz
and
R.
García
, “
Near field emission scanning tunneling microscopy
,”
Appl. Phys. Lett.
65
,
3022
3024
(
1994
).
52.
K.
Watanabe
,
Y.
Nakamura
, and
M.
Ichikawa
, “
Conductive optical-fiber STM probe for local excitation and collection of cathodoluminescence at semiconductor surfaces
,”
Opt. Express
21
,
19261
19268
(
2013
).
53.
M.
Rudolph
,
S. M.
Carr
,
G.
Subramania
,
G.
Ten Eyck
,
J.
Dominguez
,
T.
Pluym
,
M. P.
Lilly
,
M. S.
Carroll
, and
E.
Bussmann
, “
Probing the limits of Si:P δ-doped devices patterned by a scanning tunneling microscope in a field-emission mode
,”
Appl. Phys. Lett.
105
,
163110
(
2014
).
54.
Y.
Uehara
,
M.
Kuwahara
, and
S.
Katano
, “
Measurement of phonon energy of Sb2Te3 by scanning tunneling microscope light-emission spectroscopy
,”
Solid State Commun.
177
,
29
32
(
2014
).
55.
C.
Chen
,
N.
Hayazawa
, and
S.
Kawata
, “
A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient
,”
Nat. Commun.
5
,
3312
(
2014
).
56.
C.
Stanciu
,
M.
Sackrow
, and
A. J.
Meixner
, “
High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope
,”
J. Microsc.
229
,
247
253
(
2008
).
57.
A.
Hartschuh
, “
Tip-enhanced near-field optical microscopy
,”
Angew. Chem., Int. Ed.
47
,
8178
8191
(
2008
).
58.
S.
Sheng
,
W.
Li
,
J.
Gou
,
P.
Cheng
,
L.
Chen
, and
K.
Wu
, “
Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials’ studies
,”
Rev. Sci. Instrum.
89
,
053107
(
2018
).
59.
A.
Drechsler
,
M. A.
Lieb
,
C.
Debus
,
A. J.
Meixner
, and
G.
Tarrach
, “
Confocal microscopy with a high numerical aperture parabolic mirror
,”
Opt. Express
9
,
637
644
(
2001
).
60.
D.
Zhang
,
X.
Wang
,
K.
Braun
,
H.-J.
Egelhaaf
,
M.
Fleischer
,
L.
Hennemann
,
H.
Hintz
,
C.
Stanciu
,
C. J.
Brabec
,
D. P.
Kern
, and
A. J.
Meixner
, “
Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials
,”
J. Raman Spectrosc.
40
,
1371
1376
(
2009
).
61.
C.
Debus
,
M. A.
Lieb
,
A.
Drechsler
, and
A. J.
Meixner
, “
Probing highly confined optical fields in the focal region of a high na parabolic mirror with subwavelength spatial resolution
,”
J. Microsc.
210
,
203
208
(
2003
).
62.
K.
Sperlich
and
H.
Stolz
, “
Quantum efficiency measurements of (EM)CCD cameras: High spectral resolution and temperature dependence
,”
Meas. Sci. Technol.
25
,
015502
(
2013
).
63.
M. J.
Romero
,
J.
van de Lagemaat
,
I.
Mora-Sero
,
G.
Rumbles
, and
M. M.
Al-Jassim
, “
Imaging of resonant quenching of surface plasmons by quantum dots
,”
Nano Lett.
6
,
2833
2837
(
2006
).
64.
C. I.
Osorio
,
T.
Coenen
,
B. J. M.
Brenny
,
A.
Polman
, and
A. F.
Koenderink
, “
Angle-resolved cathodoluminescence imaging polarimetry
,”
ACS Photonics
3
,
147
154
(
2016
).
65.
T.
Coenen
,
E. J. R.
Vesseur
,
A.
Polman
, and
A. F.
Koenderink
, “
Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy
,”
Nano Lett.
11
,
3779
3784
(
2011
).
66.
L.
Zhang
,
Y.-J.
Yu
,
L.-G.
Chen
,
Y.
Luo
,
B.
Yang
,
F.-F.
Kong
,
G.
Chen
,
Y.
Zhang
,
Q.
Zhang
,
Y.
Luo
,
J.-L.
Yang
,
Z.-C.
Dong
, and
J. G.
Hou
, “
Electrically driven single-photon emission from an isolated single molecule
,”
Nat. Commun.
8
,
580
(
2017
).
67.
C. C.
Leon
,
A.
Rosławska
,
A.
Grewal
,
O.
Gunnarsson
,
K.
Kuhnke
, and
K.
Kern
, “
Photon superbunching from a generic tunnel junction
,”
Sci. Adv.
5
,
eaav4986
(
2019
).
68.
P.
Merino
,
C.
Große
,
A.
Rosławska
,
K.
Kuhnke
, and
K.
Kern
, “
Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown–Twiss scanning tunnelling microscopy
,”
Nat. Commun.
6
,
8461
(
2015
).
69.
S.
Meuret
,
T.
Coenen
,
S. Y.
Woo
,
Y.-H.
Ra
,
Z.
Mi
, and
A.
Polman
, “
Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging
,”
Nano Lett.
18
,
2288
2293
(
2018
).
70.
M.
Bass
,
C.
DeCusatis
,
J.
Enoch
,
V.
Lakshminarayanan
,
G.
Li
,
C.
Macdonald
,
V.
Mahajan
, and
E.
Van Stryland
,
Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(Set)
, 3rd ed. (
McGraw-Hill
,
USA
,
2009
).
71.
L. F.
Zagonel
,
L.
Rigutti
,
M.
Tchernycheva
,
G.
Jacopin
,
R.
Songmuang
, and
M.
Kociak
, “
Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires
,”
Nanotechnology
23
,
455205
(
2012
).
72.
F.
Withers
,
O.
Del Pozo-Zamudio
,
S.
Schwarz
,
S.
Dufferwiel
,
P. M.
Walker
,
T.
Godde
,
A. P.
Rooney
,
A.
Gholinia
,
C. R.
Woods
,
P.
Blake
,
S. J.
Haigh
,
K.
Watanabe
,
T.
Taniguchi
,
I. L.
Aleiner
,
A. K.
Geim
,
V. I.
Fal’ko
,
A. I.
Tartakovskii
, and
K. S.
Novoselov
, “
WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature
,”
Nano Lett.
15
,
8223
8228
(
2015
).
73.
I.
Horcas
,
R.
Fernández
,
J. M.
Gómez-Rodríguez
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A. M.
Baro
, “
WSXM: A software for scanning probe microscopy and a tool for nanotechnology
,”
Rev. Sci. Instrum.
78
,
013705
(
2007
).
74.
D.
Nečas
and
P.
Klapetek
, “
Gwyddion: An open-source software for SPM data analysis
,”
Cent. Eur. J. Phys.
10
,
181
188
(
2012
).
75.
H. S.
Wong
and
C.
Durkan
, “
Unraveling the rotational disorder of graphene layers in graphite
,”
Phys. Rev. B
81
,
045403
(
2010
).
76.
S.
Patil
,
S.
Kolekar
, and
A.
Deshpande
, “
Revisiting HOPG superlattices: Structure and conductance properties
,”
Surf. Sci.
658
,
55
60
(
2017
).
77.
E. S.
Morell
,
P.
Vargas
,
P.
Häberle
,
S. A.
Hevia
, and
L.
Chico
, “
Edge states of moiré structures in graphite
,”
Phys. Rev. B
91
,
035441
(
2015
).
78.
L.-J.
Yin
,
J.-B.
Qiao
,
W.-X.
Wang
,
Z.-D.
Chu
,
K. F.
Zhang
,
R.-F.
Dou
,
C. L.
Gao
,
J.-F.
Jia
,
J.-C.
Nie
, and
L.
He
, “
Tuning structures and electronic spectra of graphene layers with tilt grain boundaries
,”
Phys. Rev. B
89
,
205410
(
2014
).
79.
J.
Červenka
and
C. F. J.
Flipse
, “
Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects
,”
Phys. Rev. B
79
,
195429
(
2009
).
80.
P.
Byszewski
,
Z.
Klusek
,
S.
Pierzgalski
,
S.
Datta
,
E.
Kowalska
, and
M.
Popławska
, “
STM/STS observation of ferrocene derivative adduct to C60 on HOPG
,”
J. Electron Spectrosc. Relat. Phenom.
130
,
25
32
(
2003
).
81.
G.
Teobaldi
,
E.
Inami
,
J.
Kanasaki
,
K.
Tanimura
, and
A. L.
Shluger
, “
Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite
,”
Phys. Rev. B
85
,
085433
(
2012
).
82.
K.
Oura
,
M.
Katayama
,
A. V.
Zotov
,
V. G.
Lifshits
, and
A. A.
Saranin
, “
Electronic structure of surfaces
,” in
Surface Science: An Introduction
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2003
), pp.
261
293
.
83.
J.
Mysliveček
,
A.
Stróżecka
,
J.
Steffl
,
P.
Sobotík
,
I.
Ošt’ádal
, and
B.
Voigtländer
, “
Structure of the adatom electron band of the Si(111) −7 × 7 surface
,”
Phys. Rev. B
73
,
161302(R)
(
2006
).
84.
K.
Takayanagi
,
Y.
Tanishiro
,
M.
Takahashi
, and
S.
Takahashi
, “
Structural analysis of Si(111) −7 × 7 by UHV-transmission electron diffraction and microscopy
,”
J. Vac. Sci. Technol. A
3
,
1502
1506
(
1985
).
85.
J.
Wang
,
L.
Jin
,
H.
Zhou
,
H.
Fu
,
C.
Song
,
S.
Meng
, and
J.
Zhang
, “
Direct imaging of surface states hidden in the third layer of Si(111) −7 × 7 surface by pz-wave tip
,”
Appl. Phys. Lett.
113
,
031604
(
2018
).
86.
A. B.
Odobescu
and
S. V.
Zaitsev-Zotov
, “
Energy gap revealed by low-temperature scanning–tunnelling spectroscopy of the Si(111) −7 × 7 surface in illuminated slightly doped crystals
,”
J. Phys.: Condens. Matter
24
,
395003
(
2012
).
87.
E.
Ponomarev
,
Á.
Pásztor
,
A.
Waelchli
,
A.
Scarfato
,
N.
Ubrig
,
C.
Renner
, and
A. F.
Morpurgo
, “
Hole transport in exfoliated monolayer MoS2
,”
ACS Nano
12
,
2669
2676
(
2018
).
88.
S.
McDonnell
,
A.
Azcatl
,
R.
Addou
,
C.
Gong
,
C.
Battaglia
,
S.
Chuang
,
K.
Cho
,
A.
Javey
, and
R. M.
Wallace
, “
Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments
,”
ACS Nano
8
,
6265
6272
(
2014
).
89.
R.
Addou
and
R. M.
Wallace
, “
Surface analysis of WSe2 crystals: Spatial and electronic variability
,”
ACS Appl. Mater. Interfaces
8
,
26400
26406
(
2016
).
90.
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
C.
Zhang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
, “
Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
,”
Nature
498
,
82
86
(
2013
).
91.
M.
Hegner
,
P.
Wagner
, and
G.
Semenza
, “
Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy
,”
Surf. Sci.
291
,
39
46
(
1993
).
92.
R.
Rösch
and
R.
Schuster
, “
Tunneling spectroscopy of clean and adsorbate-covered gold surfaces in humid air, measured with fast bias voltage ramps
,”
Surf. Sci.
631
,
105
111
(
2015
); Surface Science and Electrochemistry—20 years later.
93.
T.
Andreev
,
I.
Barke
, and
H.
Hövel
, “
Adsorbed rare-gas layers on Au(111): Shift of the Shockley surface state studied with ultraviolet photoelectron spectroscopy and scanning tunneling spectroscopy
,”
Phys. Rev. B
70
,
205426
(
2004
).
94.
J.
Aizpurua
,
S. P.
Apell
, and
R.
Berndt
, “
Role of tip shape in light emission from the scanning tunneling microscope
,”
Phys. Rev. B
62
,
2065
2073
(
2000
).
95.
A.
Martín-Jiménez
,
A. I.
Fernández-Domínguez
,
K.
Lauwaet
,
D.
Granados
,
R.
Miranda
,
F. J.
García-Vidal
, and
R.
Otero
, “
Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM
,”
Nat. Commun.
11
,
1021
(
2020
).
96.
M. R.
Hummon
,
A. J.
Stollenwerk
,
V.
Narayanamurti
,
P. O.
Anikeeva
,
M. J.
Panzer
,
V.
Wood
, and
V.
Bulović
, “
Measuring charge trap occupation and energy level in CdSe/ZnS quantum dots using a scanning tunneling microscope
,”
Phys. Rev. B
81
,
115439
(
2010
).
97.
B.
Diaconescu
,
L. A.
Padilha
,
P.
Nagpal
,
B. S.
Swartzentruber
, and
V. I.
Klimov
, “
Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy: The role of parity selection rules in optical absorption
,”
Phys. Rev. Lett.
110
,
127406
(
2013
).
98.
L.
Jdira
,
K.
Overgaag
,
J.
Gerritsen
,
D.
Vanmaekelbergh
,
P.
Liljeroth
, and
S.
Speller
, “
Scanning tunnelling spectroscopy on arrays of CdSe quantum dots: Response of wave functions to local electric fields
,”
Nano Lett.
8
,
4014
4019
(
2008
).
99.
K.
Overgaag
,
P.
Liljeroth
,
B.
Grandidier
, and
D.
Vanmaekelbergh
, “
Scanning tunneling spectroscopy of individual PbSe quantum dots and molecular aggregates stabilized in an inert nanocrystal matrix
,”
ACS Nano
2
,
600
606
(
2008
).
100.
P.
Liljeroth
,
L.
Jdira
,
K.
Overgaag
,
B.
Grandidier
,
S.
Speller
, and
D.
Vanmaekelbergh
, “
Can scanning tunnelling spectroscopy measure the density of states of semiconductor quantum dots?
,”
Phys. Chem. Chem. Phys.
8
,
3845
3850
(
2006
).
101.
D.
Katz
,
T.
Wizansky
,
O.
Millo
,
E.
Rothenberg
,
T.
Mokari
, and
U.
Banin
, “
Size-dependent tunneling and optical spectroscopy of CdSe quantum rods
,”
Phys. Rev. Lett.
89
,
086801
(
2002
).
102.
O.
Millo
,
D.
Katz
,
Y.
Cao
, and
U.
Banin
, “
Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots
,”
Phys. Rev. Lett.
86
,
5751
5754
(
2001
).
103.
L.
Jdira
,
P.
Liljeroth
,
E.
Stoffels
,
D.
Vanmaekelbergh
, and
S.
Speller
, “
Size-dependent single-particle energy levels and interparticle Coulomb interactions in CdSe quantum dots measured by scanning tunneling spectroscopy
,”
Phys. Rev. B
73
,
115305
(
2006
).
104.
E. P. A. M.
Bakkers
,
Z.
Hens
,
A.
Zunger
,
A.
Franceschetti
,
L. P.
Kouwenhoven
,
L.
Gurevich
, and
D.
Vanmaekelbergh
, “
Shell-tunneling spectroscopy of the single-particle energy levels of insulating quantum dots
,”
Nano Lett.
1
,
551
556
(
2001
).
105.
T.
Lee
,
K.
Noguchi
,
H.
Nishimura
, and
D.
Kim
, “
Absorption and photoluminescence properties of CdSe quantum dots prepared by hydrothermal method
,”
J. Phys.: Conf. Ser.
1220
,
012028
(
2019
).
106.
V.
Zólyomi
,
J.
Koltai
, and
J.
Kürti
, “
Resonance Raman spectroscopy of graphite and graphene
,”
Phys. Status Solidi B
248
,
2435
2444
(
2011
).
107.
A.
Foti
,
F.
Barreca
,
E.
Fazio
,
C.
D’Andrea
,
P.
Matteini
,
O. M.
Maragò
, and
P. G.
Gucciardi
, “
Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 μm diameter gold wires
,”
Beilstein J. Nanotechnol.
9
,
2718
2729
(
2018
).
108.
Y.
Fang
,
Z.
Zhang
, and
M.
Sun
, “
High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope
,”
Rev. Sci. Instrum.
87
,
033104
(
2016
).
109.
R. J. P.
Román
,
F. J. R. C.
Costa
,
A.
Zobelli
,
C.
Elias
,
P.
Valvin
,
G.
Cassabois
,
B.
Gil
,
A.
Summerfield
,
T. S.
Cheng
,
C. J.
Mellor
,
P. H.
Beton
,
S. V.
Novikov
, and
L. F.
Zagonel
, “
Band gap measurements of monolayer h-BN and insights into carbon-related point defects
,”
2D Mater.
8
,
044001
(
2021
).
110.
S.
Palleschi
,
G.
D’Olimpio
,
P.
Benassi
,
M.
Nardone
,
R.
Alfonsetti
,
G.
Moccia
,
M.
Renzelli
,
O. A.
Cacioppo
,
A.
Hichri
,
S.
Jaziri
,
A.
Politano
, and
L.
Ottaviano
, “
On the role of nano-confined water at the 2D/SiO2 interface in layer number engineering of exfoliated MoS2 via thermal annealing
,”
2D Mater.
7
,
025001
(
2020
).
111.
V. S.
Bagaev
,
S. N.
Nikolaev
,
V. S.
Krivobok
,
M. A.
Chernopitsskii
,
A. A.
Vasilchenko
, and
G. F.
Kopytov
, “
Exciton luminescence of WSe2 bilayers
,”
Russ. Phys. J.
62
,
1017
1022
(
2019
).
112.
F.
Tumino
,
C. S.
Casari
,
M.
Passoni
,
V.
Russo
, and
A.
Li Bassi
, “
Pulsed laser deposition of single-layer MoS2 on Au(111): From nanosized crystals to large-area films
,”
Nanoscale Adv.
1
,
643
655
(
2019
).
113.
U.
Bhanu
,
M. R.
Islam
,
L.
Tetard
, and
S. I.
Khondaker
, “
Photoluminescence quenching in gold–MoS2 hybrid nanoflakes
,”
Sci. Rep.
4
,
5575
(
2014
).
114.
K.
Watanabe
and
T.
Taniguchi
, “
Hexagonal boron nitride as a new ultraviolet luminescent material and its application
,”
Int. J. Appl. Ceram. Technol.
8
,
977
989
(
2011
).
115.
H. X.
Jiang
and
J. Y.
Lin
, “
Hexagonal boron nitride for deep ultraviolet photonic devices
,”
Semicond. Sci. Technol.
29
,
084003
(
2014
).
116.
T. T.
Tran
,
K.
Bray
,
M. J.
Ford
,
M.
Toth
, and
I.
Aharonovich
, “
Quantum emission from hexagonal boron nitride monolayers
,”
Nat. Nanotechnol.
11
,
37
41
(
2016
).
117.
T. T.
Tran
,
C.
Elbadawi
,
D.
Totonjian
,
C. J.
Lobo
,
G.
Grosso
,
H.
Moon
,
D. R.
Englund
,
M. J.
Ford
,
I.
Aharonovich
, and
M.
Toth
, “
Robust multicolor single photon emission from point defects in hexagonal boron nitride
,”
ACS Nano
10
,
7331
7338
(
2016
).
118.
N.
Mendelson
,
D.
Chugh
,
J. R.
Reimers
,
T. S.
Cheng
,
A.
Gottscholl
,
H.
Long
,
C. J.
Mellor
,
A.
Zettl
,
V.
Dyakonov
,
P. H.
Beton
,
S. V.
Novikov
,
C.
Jagadish
,
H. H.
Tan
,
M. J.
Ford
,
M.
Toth
,
C.
Bradac
, and
I.
Aharonovich
, “
Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride
,”
Nat. Mater.
20
,
321
328
(
2021
).
119.
L.
Schué
,
B.
Berini
,
A. C.
Betz
,
B.
Plaçais
,
F.
Ducastelle
,
J.
Barjon
, and
A.
Loiseau
, “
Dimensionality effects on the luminescence properties of hBN
,”
Nanoscale
8
,
6986
6993
(
2016
).
120.
A.
Hernández-Mínguez
,
J.
Lähnemann
,
S.
Nakhaie
,
J. M. J.
Lopes
, and
P. V.
Santos
, “
Luminescent defects in a few-layer h-BN film grown by molecular beam epitaxy
,”
Phys. Rev. Appl.
10
,
044031
(
2018
).
121.
F.
Hayee
,
L.
Yu
,
J. L.
Zhang
,
C. J.
Ciccarino
,
M.
Nguyen
,
A. F.
Marshall
,
I.
Aharonovich
,
J.
Vučković
,
P.
Narang
,
T. F.
Heinz
, and
J. A.
Dionne
, “
Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy
,”
Nat. Mater.
19
,
534
539
(
2020
).
122.
B.
Shevitski
,
S. M.
Gilbert
,
C. T.
Chen
,
C.
Kastl
,
E. S.
Barnard
,
E.
Wong
,
D. F.
Ogletree
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Zettl
, and
S.
Aloni
, “
Blue-light-emitting color centers in high-quality hexagonal boron nitride
,”
Phys. Rev. B
100
,
155419
(
2019
).
123.
B.
Berzina
,
V.
Korsaks
,
L.
Trinkler
,
A.
Sarakovskis
,
J.
Grube
, and
S.
Bellucci
, “
Defect-induced blue luminescence of hexagonal boron nitride
,”
Diamond Relat. Mater.
68
,
131
137
(
2016
).
You do not currently have access to this content.